1、一次函数拔高题1一次函数有关注水问题1、有甲、乙两个圆柱体形蓄水池,将甲池中的水以一定的速度注入乙池甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式为y=- 23x+2结合图象回答下列问题:(1)求出乙蓄水池中水的深度y与注水时间x之间的函数关系式;(2)图中交点A的坐标是 ;表示的实际意义是 (3)当甲、乙两个蓄水池的水的体积相等时,求甲池中水的深度2、如图,有一个底面积为15cm12cm的长方体容器A,和一个棱长为6cm5cm10cm的长方体铁块B(1)若将铁块B的6cm10cm面放到容器A的底面
2、上往A中注水,注水过程中A中水面高度y(cm)与注水时间x(s)的函数图象如图所示容器A的高度是8 cm求(1)中注水速度v(cm/s)和图中的t的值(2)若将铁块B的6cm5cm面和5cm10cm面分别放入容器A底面,以同样速度向容器注水,请在图、图中画出水面水面高度y(cm)与注水时间x(s)的函数关系大致图象3(2011扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上)现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示根据图象提供的信息,解答下列问题:(1)图2中折线A
3、BC表示 槽中水的深度与注水时间之间的关系,线段DE表示 槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是 (2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计)(直接写成结果)4、(2011大连)如图1,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的 1/4(容器各面的厚度忽略不计)现以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止图2是注水
4、全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象(1)在注水过程中,注满A所用时间为 s,再注满B又用了 s;(2)求A的高度hA及注水的速度v;(3)求注满容器所需时间及容器的高度5、(2010长春)如图1,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭设A,B,C三个容器内的水量分别为ya,yb,yc(单位:升),时间为t(单位:分)开始时,B容器内有水50升,yayc与t的函数图象如图2所示,请在0t10的范围内解答下列
5、问题:(1)求t=3时,yb的值(2)求yb与t的函数关系式,并在图2中画出其函数图象(3)求ya:yb:yc=2:3:4时t的值一次函数行程问题1.AB两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶货车两小时可到达途中C站,客车需9小时到达C站(如图1所示)货车的速度是客车的34 ,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小时)之间的函数关系如图2所示(1)求客、货两车的速度;(2)求两小时后,货车到C站的距离y2与行驶时间x之间的函数关系式;(3)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义2、(2008南京)一列快车从甲地
6、驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系根据图象进行以下探究:(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围; (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同在第一列快车与慢 车相遇30分钟后,第二列快车与慢车相遇求第二列快车比第一列快车晚出发多少小时?ABCDOy/km90012x/h43、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图
7、象,根据图象中的有关数据回答下列问题:分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;在的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米? 4、一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函
8、数关系(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)5.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港设甲、乙两船行驶x(h)后,与B港的距离分别为、(km),、与x的函数关系如图所示(1)填空:A、C两港口间的距离为 km, ;(2)求图中点P的坐标,并
9、解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围Oy/km9030a0.53P甲乙x/h6.某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟下图表示快递车距离A地的路程(单位:千米)与所用时间(单位:时)的函数图象已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时(1) 请在下图中画出货车距离A地的路程(千米)与所用时间(时)的函数图象;(2) 求两车在途中相遇的次数(直接写出答案); (3) 求两车最后一次相遇时,距离A地的路程和货车从A
10、地出发了几小时 7、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为(Km),出租车离甲地的距离为(Km),客车行驶的时间为x (h),与的函数关系如图1所示(1) 根据图象直接写出,与x的函数关系式;(2) 分别求出当x3,x5,x8时,两车之间的距离;(3) 若设两车之间的距离为s (Km),请写出s关于x的函数关系式;(4) 甲乙两地间有M、N两个加油站,相距200 Km,若客车进入M站加油时,出租车恰好进入N站加油,求M加油站到甲地的距离8.(08黑龙江)武警战士乘一冲锋A舟从地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群
11、众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变(1)请直接写出冲锋舟从A地到C地所用的时间(2)求水流的速度(3)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数关系式为,假设群众上下船的时间不计,求冲锋舟在距离A地多远处与救生艇第二次相遇?9.(2013牡丹江)快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车
12、到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示请结合图象信息解答下列问题:(1)快、慢两车的速度各是多少?(2)出发多少小时,快、慢两车距各自出发地的路程相等?(3)直接写出在慢车到达甲地前,快、慢两车相距的路程为150千米的次数10.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量与行驶时间的
13、函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由 5、直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1;(1)求直线BC的解析式;(2)直线EF:y=kx-k(k0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,说明理由;(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形BPQ,连接QA并延长交y轴于点K当P点运动时,K点的位置
14、是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由 13、“六一”前夕,某玩具经销商用去2350元购进A.B.C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具套,B种玩具套,三种电动玩具的进价和售价如右表所示,型 号C进价(元套)405550售价(元套)508065用含、的代数式表示购进C种玩具的套数;求与之间的函数关系式;假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元。求出利润P(元)与(套)之间的函数关系式;求出利润的最大值,并写出此时三种玩具各多少套。练习:(05丽水)为宣传秀山丽水,在“丽水文化摄影节”前夕,
15、丽水电视台摄制组乘船往返于丽水(A)、青田(B)两码头,在A、B间设立拍摄中心C,拍摄瓯江沿岸的景色往返过程中,船在C、B处均不停留,离开码头A、B的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示根据图象提供的信息,解答下列问题:(1)船只从码头AB,航行的时间为 小时、航行的速度为 千米/时;船只从码头BA,航行的时间为 小时、航行的速度为 千米/时;(2)过点C作CHt轴,分别交AD、DF于点G、H,设AC=x,GH=y,求出y与x之间的函数关系式;(3)若拍摄中心C设在离A码头25千米处, 摄制组在拍摄中心C分两组行动,一组乘橡皮艇漂流而下,另一组乘船到达码头B后,立即返回求船只往返C、B两处所用的时间;两组在途中相遇,求相遇时船只离拍摄中心C有多远
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100