ImageVerifierCode 换一换
格式:PDF , 页数:154 ,大小:2.98MB ,
资源ID:4468010      下载积分:25 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4468010.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【宇***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【宇***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2024模糊测试白皮书.pdf)为本站上传会员【宇***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2024模糊测试白皮书.pdf

1、模糊测试技术白皮书模糊测试技术白皮书主编单位云起无垠数说安全2024 年 8 月模糊测试技术白皮书本书编委会本书编委会总顾问:总顾问:夏虹主主编:编:谭晓生副主编:副主编:陈广勇崔宝江陈建军胡晓旭张明明牛伟纳郑立沈凯文成成员:员:(按姓氏拼音为序)陈宇轩陈安莹曹思玮丁皓甘成昱韩敬维侯安然季可航李唯刘坤李晶李静文李学龙马思远谭杰王海清王勇王雪王书辉夏营徐士朋张新怡周鹏作者单位:作者单位:清华大学北京邮电大学电子科技大学北京中关村实验室公安部第三研究所中国信息通信研究院稳定性保障实验室长安通信科技有限责任公司数说安全北京云起无垠科技有限公司模糊测试技术白皮书引言引言在信息技术迅猛发展的数字时代,软

2、件已成为一切的基石。海量代码正在快速改变各行业的生产范式,加速全球信息技术的进步。然而,随着开源组件和第三方代码的广泛应用,前所未有的安全风险也随之而来,使得软件安全问题成为企业乃至国家的关注焦点。新思科技应用安全测试服务分析报告36数据显示,97%的被测目标被发现存在某种形式的漏洞,其中 36%为严重及高风险漏洞,导致软件安全“灰犀牛事件”1频发。面对日益复杂的网络环境和多样化的攻击手段,传统基于规则的安全检测方法逐渐暴露出其局限性,难以及时识别新出现的安全漏洞。这种局限性突显了采用更先进、更灵活的安全技术的重要性,例如运用人工智能和机器学习技术提升安全检测能力,以更有效地识别和应对未知的安

3、全威胁,从而确保软件和系统的安全。在此背景下,模糊测试11(Fuzz Testing 或 Fuzzing)作为验证软件健壮性和安全性的关键技术,受到了广泛关注与应用。模糊测试通过模拟攻击者的行为,生成大量意外或随机的输入,挑战系统的稳定性和安全性,旨在发现潜在的安全漏洞和弱点。相比传统的基于规则的测试方法,模糊测试不依赖于已知的漏洞模式,而是通过随机变异的输入数据,全面覆盖系统的各类输入情况,从而大幅提高漏洞检测的广度和深度。因此,模糊测试在发现未知漏洞、提升测试覆盖率以及减少误报率方面具有无可比拟的优势。1“灰犀牛事件”(Grey Rhino Event)是一个比喻性的术语,用来描述那些虽然

4、明显可见但通常被忽视,直到它们成为严重问题的大型风险。模糊测试技术白皮书近年来,随着大语言模型和安全智能体技术的引入,模糊测试在应对复杂软件系统和未知威胁方面展现出更大的潜力。大语言模型通过对程序代码的深度理解和分析,能够生成更具针对性的测试用例,极大提升模糊测试的覆盖率和有效性。而且,安全智能体技术能够自动化地进行漏洞检测、分析和修复,大幅提高整体测试效率和安全防护水平。本白皮书共分为八个部分:模糊测试概述:介绍模糊测试的基本概念和历史发展。模糊测试技术解析:深入探讨模糊测试的基本原理、关键技术和不同分类。应用领域分析:详细介绍模糊测试在不同应用领域中的实际应用和效果。需求与创新案例:展示行

5、业内模糊测试的最佳创新案例,涵盖多个行业的具体需求和成功案例。技术实施指南:详细讲解模糊测试的技术实施,包括工具选择、流程方法以及自动化和智能化的最新进展。挑战与未来趋势:分析当前模糊测试面临的挑战和未来发展趋势。政策和标准介绍:介绍国内外模糊测试相关的政策和标准。结论与展望:总结模糊测试的整体价值,并对未来的发展方向进行展望。模糊测试技术白皮书目录目录一、一、模糊测试概述模糊测试概述.1 11.1什么是模糊测试技术.11.2模糊测试的历史与发展沿革.31.2.1 起源时代:随机模糊测试.41.2.2 进化时代:反馈式模糊测试.51.2.3 智能时代:模糊测试智能体.71.3模糊测试与传统测试

6、技术的差异与优势.81.3.1 模糊测试与传统测试技术的差异.91.3.2 模糊测试技术的核心优势.12二、二、模糊测试技术解析模糊测试技术解析.15152.1模糊测试的技术原理.152.2模糊测试的分类.202.3模糊测试的关键技术.222.3.1 预处理技术.222.3.2 测试用例生成技术.262.3.3 调度优化策略.292.3.4 缺陷检测技术.312.3.5 测试去重和优先级策略.362.4模糊测试产品的前沿研究热点.372.4.1 基于大模型的测试驱动智能生成技术.382.4.2 基于大模型的种子变异和优化技术.402.4.3 基于大模型的修复代码生成技术.42三、三、模糊测试的

7、模糊测试的检测对象检测对象.45453.1 应用程序模糊测试.463.1.1 源代码模糊测试.463.1.2 二进制模糊测试.483.2 WEBAPI 模糊测试.503.3 数据库模糊测试.533.4 协议模糊测试.553.5 操作系统模糊测试.57模糊测试技术白皮书3.6 固件模糊测试.59四、四、模糊测试的需求与应用案例模糊测试的需求与应用案例.62624.1 金融领域.624.1.1 金融领域的模糊测试需求.624.1.2 金融领域的应用案例.644.2 智能网联汽车领域.674.2.1 智能网联汽车领域的模糊测试需求.674.2.2 智能网联汽车领域的应用案例.704.3 工业互联网领

8、域.734.3.1 工业互联网领域的模糊测试需求.734.3.2 工业互联网领域的应用案例.764.4 军队军工领域.784.4.1 军队军工领域的模糊测试需求.784.4.2 军队军工领域的应用案例.804.5 信创领域.824.5.1 信创领域的模糊测试需求.824.5.2 信创领域的应用案例.854.6 检验检测领域.874.6.1 检验检测领域的模糊测试需求.874.6.2 检验检测领域的应用案例.894.7 信息和通信技术领域.914.7.1 信息和通信技术领域的模糊测试需求.914.7.2 信息和通信技术领域的应用案例.924.8 人工智能领域.944.8.1 人工智能领域的模糊测

9、试需求.944.8.2 人工智能领域的应用案例.964.9 区块链领域.984.9.1 区块链智能合约的模糊测试需求.984.9.2 区块链领域的应用案例.100五、五、模糊测试的技术实施模糊测试的技术实施.1031035.1 模糊测试工具的选择与使用.1035.1.1 开源模糊测试工具.1035.1.2 商业模糊测试产品.107模糊测试技术白皮书5.1.3 产品差异性分析.1105.2 模糊测试场景应用.1155.2.1 模糊测试在漏洞挖掘场景中的应用.1155.2.2 模糊测试在 DevSecOps 场景中的应用.1185.2.3 模糊测试在入网检测场景中的应用.121六、六、模糊测试的未

10、来与发展趋势模糊测试的未来与发展趋势.1251256.1 智能化模糊测试能力.1256.2 全栈漏洞检测能力.1266.3 持续集成模糊测试能力.1276.4 并行分布式模糊测试能力.1296.5 模糊测试即服务能力.130七、七、模糊测试的政策与标准模糊测试的政策与标准.1321327.1 国外政策与标准.1327.2 国内政策与标准.134八、八、结论与展望结论与展望.136136九、九、参考资料参考资料.138138模糊测试技术白皮书图目录图目录图 1 模糊测试迷宫探索示意图.2图 2 模糊测试技术发展过程中的三个阶段.4图 3 不同阶段软件安全测试工具的生命周期.8图 4 不同技术漏洞

11、检测能力.11图 5 模糊测试技术架构五大核心模块.15图 6 模糊测试工作流程.17图 7 模糊测试的分类.20图 8 模糊测试不同阶段关键技术.22图 9 传统模糊测试典型工作流程与能力瓶颈.38图 10 云起无垠测试驱动智能生成策略.39图 11 基于大模型的种子变异和优化技术.41图 12 自动化漏洞修复、验证框架.43图 13 模糊测试分类.45图 14 源代码模糊测试流程图.47图 15 二进制程序的模糊测试流程图.49图 16 Web API 模糊测试流程图.51图 17 数据库模糊测试流程图.53图 18 协议模糊测试流程图.55图 19 操作系统模糊测试流程图.59图 20

12、固件模糊测试流程图.60图 21 某银行模糊测试方案部署图.65图 22 智能网联汽车通信场景示意.69图 23 模糊测试在汽车软件不同测试阶段的应用.71图 24 汽车行业协议模糊测试案例.72图 25 工业控制系统模糊测试框架.77图 26 信创产业链.82图 27 数据库模糊测试方案图.86图 28 检验检测机构模糊测试架构图.90图 29 华为模糊测试应用实践图.93图 30 模糊测试在漏洞挖掘场景中的应用.116图 31 模糊测试在 DevSecOps 场景中的应用.119图 32 模糊测试在入网检测场景中的应用.122模糊测试技术白皮书表目录表目录表 1 工业互联网攻击典型事件.7

13、4表 2 模糊测试产品差异性分析.111模糊测试技术白皮书1一、一、模糊测试概述模糊测试概述模糊测试11是一种前沿的自动化测试技术,专注于挖掘软件系统中的漏洞和缺陷。它的核心理念是通过向程序输入大量随机、异常或意外的数据(即“模糊”数据),从而触发系统异常行为或崩溃。模糊测试不依赖已知的漏洞模式或规则,而是利用半随机或基于人工智能的策略生成输入,深入探索系统潜在的漏洞。模糊测试能够发现内存泄漏、缓冲区溢出、代码注入等安全漏洞,以及程序中的其他错误或异常情况。这种测试方法目前已广泛应用于软件开发的各个阶段,包括产品测试、安全评估和漏洞挖掘等领域。本章将通过比喻生动地介绍模糊测试的基本思路,回顾其

14、历史与发展,分析其与传统软件安全测试方法的区别,并展示其在现代软件开发和安全评估中的优越性、重要性和广阔前景。1.1 什么是模糊测试技术模糊测试就像一位探险家在未知迷宫中的探索。在这个比喻中,复杂的应用系统好比是一个充满未知和挑战的迷宫,而模糊测试器则是那位勇敢的探险家,努力探索迷宫中隐藏的秘密通道和出口。探险家依靠智慧和勇气揭开迷宫的秘密;同样,模糊测试器通过生成大量非预期或随机的输入,挑战应用系统的极限,揭露隐藏于代码深处的漏洞模糊测试技术白皮书2和未知威胁。其具体工作步骤和过程如下:图 1 模糊测试迷宫探索示意图 进入迷宫(开始测试):进入迷宫(开始测试):模糊测试工具就像勇敢的探险家,

15、踏进了一个充满未知路径和转折的迷宫。这个迷宫象征着一个复杂的软件系统,它包含了众多待探索和解密的执行路径和状态。在这一步,探险家(模糊测试工具)准备好一切必要的装备和信息,开始对迷宫(软件系统)进行探索。迷宫探索(生成测试数据并测试):迷宫探索(生成测试数据并测试):在这场探险里,探险家不按照预定路径寻找出口,而是随机或启发式引导地选择不同路径前行。相似地,模糊测试通过生成各种随机或异常数据,并将这些数据输入软件系统中进行测试,以观察其反应。探险家的每一步选择都可能带来新的发现,而模糊测试的每一组数据输入同样可能揭示出系统的未知行为。寻找隐藏的通道和出口(发现新路径和软件问题):寻找隐藏的通道

16、和出口(发现新路径和软件问题):探险家可能在迷宫的每个转角发现一个隐藏的通道或未知的出口。在模糊测试中,生成的异常数据可能触发软件模糊测试技术白皮书3系统中隐藏的漏洞,或导致程序行为异常,从而揭露潜在的安全问题。这一步骤至关重要,能够帮助测试者有效识别出系统中的薄弱环节和潜在风险。记录和分析(分析测试结果):记录和分析(分析测试结果):探险家在发现新路径或遭遇陷阱时,会仔细记录并分析。模糊测试过程同样需要记录软件对于异常输入的反应,并进行深入的分析,确定安全漏洞或程序错误的存在是真实的。详细的记录和分析有助于理解系统的行为模式,从而为后续的改进和修复提供依据。不断迭代(持续测试):不断迭代(持

17、续测试):探险家会通过不断的探索,尝试新的路径,直到彻底探索迷宫的每一个角落。模糊测试亦然,通过持续生成新的测试数据,测试者能够全面检测并增强软件系统的安全性,确保更多安全漏洞被发现并修复。持续的迭代测试有助于提高系统的稳定性和安全性,使其在面对各种异常输入时仍能保持正常运行。通过这个比喻,模糊测试的复杂性和重要性得到了生动的诠释。探险家的勇敢和智慧,正如模糊测试工具在揭示软件系统中潜在问题时所展现的精确和效率。1.2 模糊测试的历史与发展沿革模糊测试技术自从问世以来,经历了三个显著的技术发展阶段,反映了该领域技术进步的轨迹。从最初的随机模糊测试,到现在应用最广泛的反馈式模糊测试,模糊测试技术

18、始终是科研界与产业界关注的焦点。时至今日,随着 GPT 大模型带来的技术变革,模糊测试技术白皮书4模糊测试技术已经迈入智能化时代。图 2 模糊测试技术发展过程中的三个阶段1.2.1 起源时代:随机模糊测试在“模糊测试”这一词语被提出之前,最初采用的概念被称为“猴子测试”12。1983 年,Steve Capps 开发了一款名为“Monkey”的应用程序,它通过生成随机的鼠标点击和键盘输入来测试 MacWrite 和 MacPaint 应用程序。测试人员认为这就像一只看不见的猴子在无规律地操作计算机,因此得名“猴子测试”。这种基于随机输入和操作的自动化测试方法成为了模糊测试技术的早期形式。“模糊

19、测试”这一术语由 Barton Miller 教授在 1988 年提出47。一次课程实验模糊测试技术白皮书5中,Miller 教授尝试通过拨号连接远程登录到一个 Unix 系统时,遭遇了大量干扰噪声,导致依赖外部数据输入的应用程序崩溃。这一经历促使 Miller 教授在威斯康星大学指导学生开展了一个名为“操作系统实用程序的可靠性”的项目。该项目组成员开发一个命令行工具,通过向 Unix 程序发送随机数据来测试其可靠性,并监控程序是否会出现异常或崩溃。这一简单的测试方法揭示了当时 Unix 系统中超过 25%的程序存在崩溃问题,展示了模糊测试在发现软件缺陷方面的强大能力。此后,模糊测试作为一个概

20、念被广泛认知。早期模糊测试主要采用黑盒测试7的方法,测试人员不需要了解目标程序的内部结构和实现机制。他们通过观察程序对输入和输出的处理来评估其性能和稳定性。这个阶段的模糊测试相对简单,缺乏自动化工具和框架的支持,主要依赖生成半随机数据来检测目标程序如何处理异常输入。测试人员使用模板式模糊测试或生成式模糊测试方法,创建各种随机字节序列、字符串或数字作为输入,以此发现程序的异常行为和安全漏洞。1.2.2 进化时代:反馈式模糊测试黑盒模糊测试方法因不深入应用程序的内部逻辑和代码结构,测试覆盖度和效率较低。2013 年,AFL(American Fuzzy Lop)8框架的问世有效解决了这一问题,标志

21、着反馈式模糊测试时代的到来。模糊测试技术白皮书6AFL 框架使用覆盖引导的模糊测试方法,其核心在于通过计算和跟踪程序覆盖率来指导测试。在运行时,它会收集覆盖信息,并基于这些数据和遗传变异算法生成新测试用例,以提高测试效率和准确性。这种策略确保测试能够更全面地探索未覆盖的代码区域,从而增强发现软件隐藏错误和未知漏洞的能力。反馈式模糊测试2的引入为安全专家提供了许多全新研究方向。从此,在大型安全产业界会议(如 BlackHat10、Defcon9等)和网络安全顶尖学术会议(如 USENIXSecurity32、CCS49、S&P49、NDSS48等)中,关于覆盖引导式模糊测试与符号执行、污点分析相

22、结合的讨论日益增多。随着模糊测试效率和覆盖度的显著提升,许多商业化的模糊测试产品也相继推出,模糊测试已逐渐成为软件检测体系中不可或缺的一环。随着机器学习和深度学习技术的发展,反馈式模糊测试的能力得到了进一步增强。基于机器学习的模糊测试方法能够利用历史测试数据训练模型,以预测哪些输入更可能触发新的代码路径或漏洞。这种智能化的测试生成策略,不仅提高了测试的覆盖度和效率,还能够更有效地发现复杂的安全漏洞。深度学习技术的应用则进一步推动模糊测试向智能化和自动化发展。通过使用神经网络模型,测试系统可以自动学习和识别复杂的输入模式,高效生成测试用例。同时,深度学习模型还可以帮助分析和分类测试结果,快速定位

23、和修复漏洞。2反馈式模糊测试(Feedback-based Fuzz Testing)是一种模糊测试技术,通过在测试过程中动态地收集和分析目标系统的反馈信息,来指导和优化后续的测试输入。模糊测试技术白皮书71.2.3 智能时代:模糊测试智能体随着生成式人工智能技术的飞速发展,大语言模型与模糊测试的融合为漏洞检测与修复领域带来了革命性进展。2023 年底,云起无垠首次提出模糊测试智能体37架构,标志着模糊测试正式步入“智能体”时代。在反馈式模糊测试时代,许多开源模糊测试项目和商业化工具已经展示了强大的漏洞挖掘能力。然而,模糊测试工具难以实现自动化漏洞检测,自动化漏洞修复难度大,使其难以大规模普及

24、。在智能体时代,这些瓶颈得以突破。模糊测试智能体方案由代码大模型、模糊测试引擎、静态分析引擎和知识引擎组成,通过智能化手段实现自动化漏洞检测和修复,全面提升检测效率和覆盖率。其中,代码大模型具备强大的语义理解能力,能够深入分析程序代码的结构和逻辑,并生成测试驱动代码和修复代码。模糊测试引擎结合多种漏洞检测方法,实时检测代码中的异常行为,并结合大模型生成的测试用例进行深入测试。静态分析引擎主要负责语法分析,提供精确的代码分析结果,辅助生成高质量测试驱动代码和修复补丁。知识引擎包含种子库、漏洞库和修复策略库,不仅能够提供高质量的初始测试样例,还可对漏洞的成因分析和归类提供数据支撑。总体而言,云起无

25、垠提出的模糊测试智能体方案,支持多种编程语言和应用场景,模糊测试技术白皮书8适用于不同开发环境,具备高效漏洞检测、自动化漏洞修复和大规模测试覆盖的能力,可以显著降低人力成本。该方案不仅解决了模糊测试技术使用门槛高、漏洞修复困难的痛点,还进一步提升了模糊测试的检测效率与覆盖度,实现了真正意义上的规模化漏洞自动化挖掘与修复。1.3 模糊测试与传统测试技术的差异与优势软件安全测试是确保软件系统安全性的关键过程,涉及对系统中潜在安全漏洞和弱点的持续检测与评估。企业需定期利用专业的安全测试工具,如静态分析、动态分析、模糊测试、渗透测试和安全漏洞扫描等,来识别并修复安全漏洞,从而有效预防潜在的安全风险。正

26、如图 3 所示,模糊测试在软件测试的各个阶段以及发布与运营阶段中都起着重要作用,不仅能发现已知漏洞,还能挖掘未知漏洞。图 3 不同阶段软件安全测试工具的生命周期模糊测试技术白皮书9具体而言,在软件安全测试领域,模糊测试与传统的基于规则的测试技术有着显著的差异,并展现出独特的优势。以下将详细阐述两者之间的差异以及模糊测试的优势。1.3.1 模糊测试与传统测试技术的差异本白皮书从测试方法、测试依赖性、测试覆盖范围、检测能力和测试成本与资源五个方面,对比模糊测试与传统测试技术的差异。测试方法测试方法 传统测试技术:主要包括静态分析与动态分析,其中静态分析不需要运行程序,通过检查代码的静态结构(如语法

27、和逻辑)来寻找潜在漏洞,这种方法存在严重的误报干扰,依赖专家经验进行人工降噪,耗时费力。动态测试方法主要以黑盒测试为主,旨在在不查看内部代码的情况下测试软件的外部功能。然而,这类方法依赖已知的攻击模式和漏洞库,主要集中识别已知的安全问题,存在较多的漏报与局限性。模糊测试技术:通过生成大量随机或意外的输入数据,动态地测试软件系统。模糊测试的核心在于模拟攻击者的行为,生成不可预测的输入数据,挑战系统的稳定性和安全性,以发现潜在的安全漏洞和弱点。与静态分析不同,模糊测试在软件运行时进行,能够检测到实际运行时的缺陷和异常行为。模糊测试技术白皮书10 测试依赖性测试依赖性 传统测试技术:依赖已知的漏洞模

28、式和预定义的规则,测试重点主要集中在已知的安全问题和预定义的攻击路径。它们往往基于历史数据和已知的攻击模式进行检测。这种方法的有效性高度依赖于漏洞库的完备性和规则的更新速度。模糊测试技术:不依赖已知的漏洞模式,通过半随机变异的输入数据来全面覆盖系统的各类输入情况。模糊测试能够生成各种非预期输入,测试系统在异常情况下的表现,从而发现更多的已知、未知漏洞。其优点在于能够探索未被预见的输入情况,识别出潜在的安全风险。测试覆盖范围测试覆盖范围 传统测试技术:测试范围有限,主要集中在已知的漏洞和预定义的测试场景。由于依赖于规则和模式,这些方法容易忽略未知的威胁和意外的输入情况。测试的深度和广度受限于规则

29、和模式的设计质量。模糊测试技术:测试范围广泛,通过半随机生成的输入数据,可以覆盖更多的测试场景和潜在漏洞。模糊测试的输入数据不受预定义规则的限制,可以探索系统的各种边界情况和异常行为。这使得模糊测试能够在更广泛的输入空间内发现更多的潜在漏洞。模糊测试技术白皮书11 检测能力检测能力图 4 不同技术漏洞检测能力 传统测试技术:传统安全检测技术,如 SAST 和 SCA 在已知漏洞的检测方面表现良好,但对未知漏洞的检测能力较弱。由于依赖于预定义规则和模式,传统测试方法难以识别未被记录的新型攻击手法和漏洞。对于复杂的、未被预见的输入模式,传统方法的有效性大打折扣。模糊测试技术:在未知漏洞的发现方面具

30、有显著优势,能够发现传统测试技术难以检测到的潜在安全问题。模糊测试通过随机和变异输入,能够触发系统中隐藏的漏洞和错误。其动态性使得它能够在实际运行环境中揭示出潜在的安全缺陷。模糊测试技术白皮书12 测试成本与资源测试成本与资源 传统测试技术:需要投入大量的人力和时间进行规则定义、漏洞库维护以及测试执行。这些方法的效果很大程度上依赖于测试人员的专业知识和经验,导致测试成本较高,效率较低。模糊测试技术:能够自动生成测试用例并自动执行测试,大大降低了人力成本和时间投入。特别是在引入大语言模型和安全智能体技术后,模糊测试的自动化水平和智能化程度显著提升,进一步降低了测试成本,提高了测试效率。1.3.2

31、 模糊测试技术的核心优势相较于传统的软件检测技术而言,模糊测试凭借其独特的优势,在不断变化的安全挑战中得以广泛应用,已成为现代软件安全测试中不可或缺的一部分。其核心优势包括:高覆盖率和测试效率高覆盖率和测试效率现代模糊测试工具(如 AFL)采用覆盖率引导模糊测试方案,通过计算和跟踪程序覆盖率来指导测试过程,能全面探索未测试的代码区域,显著提升测试覆盖率和效率。此外,模糊测试能够覆盖更多的测试场景和边界条件,可以在更广泛的输入空间内发现更多潜在漏洞,从而提供更全面的安全保障。模糊测试技术白皮书13 动态行为检测能力动态行为检测能力模糊测试在运行时生成并输入随机数据,实时观察软件的动态行为。这使得

32、模糊测试能发现传统静态应用测试工具(SAST)无法检测到的深层问题,并验证缺陷的可利用性。在实际运行环境中测试,模糊测试能够更准确地评估软件的安全性和稳定性,确保软件在各种使用场景下的可靠性。低误报率低误报率模糊测试通过生成随机或特制的输入数据并执行目标程序,观察程序的异常行为(如崩溃、内存泄漏等),有效减少误报。与依赖规则和模式的传统测试方法不同,模糊测试基于程序的实际运行行为发现问题,因此检测结果更真实可信。低误报率不仅提高了检测的准确性,还减少了开发团队在筛查和验证漏洞上的负担,节省大量时间和资源。发现未知漏洞发现未知漏洞模糊测试不依赖已知漏洞模式和特征,能发现传统测试方法无法检测到的未

33、知漏洞,特别是 0day 漏洞。通过不断变换输入数据,模糊测试揭示程序在各种非预期输入下的表现,挖掘出潜在的安全漏洞。这说明模糊测试在面对新型和未知威胁时表现出色,模糊测试技术白皮书14可以显著增强软件安全性。适应复杂系统适应复杂系统模糊测试在应对复杂软件系统和多样化输入方面表现优异,能够适应各种不同的应用场景和测试需求,包括但不限于传统软件、嵌入式系统及现代分布式应用。这种灵活性和适应性使模糊测试成为应对复杂系统安全挑战的理想工具。自动化与智能化自动化与智能化随着生成式人工智能技术的飞速发展,模糊测试与大语言模型的结合进一步提升了测试的智能化水平。模糊测试智能体方案通过结合语义理解和语法分析

34、能力,能够深度感知被测程序结构,实现自动化测试驱动生成和自主调度,全面覆盖潜在漏洞。此外,智能体还能进行成因分析和自动化漏洞修复,显著提升了漏洞修复的效率。自动化与智能化的结合不仅提高了测试的精确性和效率,还使得模糊测试能够持续进化,适应不断变化的安全威胁。模糊测试技术白皮书15二、二、模糊测试技术解析模糊测试技术解析模糊测试技术作为提升软件安全性和稳定性的关键手段,已成为现代软件开发和测试流程中不可或缺的一部分。本章将深入探讨模糊测试的基本原理、分类方法、核心技术及其前沿研究热点。首先,介绍模糊测试的技术原理,阐述其工作机制和基础理论。其次,分析模糊测试的不同分类,明确各自特点和适用场景。此

35、外,本章节也将重点讲解模糊测试的关键技术,包括预处理、测试用例生成、调度优化、测试去重和优先级策略以及缺陷检测技术,这些技术对于提高模糊测试效率和覆盖率至关重要。最后,探讨模糊测试的前沿研究,包括大模型驱动的智能测试生成、种子变异、优化技术以及代码修复生成技术,以全面了解当前技术现状和未来研究方向。2.1 模糊测试的技术原理模糊测试技术的原理是向软件系统输入大量随机或半随机生成的数据,以触发潜在的错误、漏洞或异常行为。主要架构由五个核心模块组成(如图 5 所示),每个模块承担着不同的功能和责任,共同确保模糊测试的有效性和高效性:图 5 模糊测试技术架构五大核心模块模糊测试技术白皮书16 预处理

36、模块预处理模块负责对待测试的软件系统进行初步分析和准备工作,以确保系统能够接受和处理后续的测试输入。该模块通常会对目标程序进行静态分析,识别程序的入口点、关键函数和潜在的攻击面,为后续的模糊测试奠定基础。预处理模块还可能执行一些初步的输入验证和格式转换工作,以确保输入数据的格式符合目标程序的预期。测试用例生成模块测试用例生成模块这是模糊测试的核心组件之一,主要职责是根据程序监控模块反馈的信息生成大量的测试用例。通过分析程序执行过程中的路径信息、崩溃数据等,该模块能够智能化地调整和优化测试用例的生成,以发现更多潜在的漏洞和问题。例如,现代模糊测试工具如 AFL 利用覆盖引导模糊测试方案,通过实时

37、计算和跟踪程序覆盖率来指导测试用例生成,确保测试全面覆盖未被测试的代码区域。测试调度模块测试调度模块在测试用例生成完毕后,负责调用目标程序并将测试用例输入执行。该模块是模糊测试的执行者,确保每个测试用例都能准确送达并执行。测试调度模块还需处理测试执行过程中的各种异常情况,如程序崩溃、超时等,确保测试过程的连续性和完整性。此外,该模块还可能记录测试用例的执行时间、资源消耗等信息,为后续分析提供数据支持。模糊测试技术白皮书17 检测与评估模块检测与评估模块在测试用例执行的同时,负责实时监控目标程序的动态行为,包括种子的执行路径信息、程序状态变化等。该模块将收集到的信息反馈给测试用例生成模块,以指导

38、后续测试用例生成,确保测试过程具有动态适应性。如果在执行过程中发生程序崩溃,该模块会记录崩溃现场的详细信息,包括中断信息、输入信息、内存状态以及寄存器和堆栈信息,并将这些信息传递给崩溃分析模块。通过这种实时监控和反馈机制,检测与评估模块能够有效评估程序的运行状态和安全性。缺陷缺陷分析分析与优化与优化模块模块负责接收程序监控模块传递的程序崩溃信息,并基于崩溃现场的内存地址、寄存器、堆栈信息等进行深入分析。该模块通过分析崩溃原因,判断崩溃的可利用性,以确定是否存在潜在的安全风险。例如,如果崩溃是由于缓冲区溢出或内存泄漏等典型的安全漏洞引起的,崩溃分析模块将评估其对系统安全的影响,并提供修复建议。崩

39、溃分析模块还能生成详细的漏洞报告,帮助开发团队理解问题根源,制定有效的修复方案。在实际的模糊测试工作中,整个流程可以被细分为图 6 中的关键步骤,以确保测试的全面性和效率:图 6 模糊测试工作流程模糊测试技术白皮书18步骤一:识别目标系统。步骤一:识别目标系统。首先,明确被测对象并详细了解其类型。这包括确认目标是客户端还是服务端程序,识别其为二进制可执行文件还是源代码,以及查阅是否存在已知的漏洞记录。获取这些信息对于制定精确的测试计划至关重要,因为它们决定了测试的方向和深度。步骤二:识别输入。步骤二:识别输入。大多数安全漏洞都是由于应用程序未能有效校验或处理用户输入而产生的。成功进行模糊测试的

40、关键在于识别所有可能的输入向量。这些向量可能包括应用程序接受的头部信息、文件名、环境变量、注册表键等。全面的输入识别有助于发现潜在的安全隐患,确保测试的覆盖充分。步骤三:生成模糊步骤三:生成模糊数据数据。在识别输入向量之后,应根据测试对象的具体特性,制定出模糊测试数据的生成策略。这些测试数据可以是基于现有数据的变种,也可以是程序运行时生成的临时数据。生成多样化的测试用例有助于揭示应用程序在不同输入条件下的行为,从而发现隐藏的漏洞。步骤四:步骤四:使用模糊数据使用模糊数据执行测试。执行测试。执行测试时,操作可能包括向应用程序发送数据包、打开文件或启动进程等。在模糊测试中,自动化这一过程至关重要。

41、通过自动化工具,可以大规模地生成和执行测试用例,从而提高测试效率和覆盖率。如果缺少自动化,测试过程将无法有效进行,容易遗漏潜在的安全问题。模糊测试技术白皮书19步骤五:监控系统行为。步骤五:监控系统行为。在模糊测试过程中,实时监控系统行为是必不可少的。这有助于及时发现任何故障或异常。若缺少有效的异常监控,程序的异常崩溃可能会被测试人员忽略,导致无法确定引发异常的具体测试用例。通常,监控过程是自动化的,以应对大量测试用例所带来的高负荷。常见的异常监控方法包括基于调试和插桩技术:基于调试的异常监控机制:这种方法通过在调试模式下运行目标软件,并使用操作系统提供的调试 API 开发专用的异常监测模块。

42、尽管实现较为复杂,但其能够高效地检测到异常情况。基于插桩的异常监控机制:插桩技术18通过向程序内添加额外代码(探针)来收集运行时信息,例如方法调用、参数值和返回值。这些信息有助于捕获程序执行的动态上下文。插桩可以是静态的(在源代码、中间码或二进制代码中插入)或动态的(在二进制执行文件中插入)。步骤六:记录缺陷,确定可利用性。步骤六:记录缺陷,确定可利用性。在模糊测试中发现潜在故障后,接下来的步骤是验证这些故障是否能够稳定复现。通常通过重放检测实现,即利用数据包重放工具来重现捕获的网络数据包。如果能够成功复现故障,则需要进一步评估该缺陷的可利用性,即判断其是否能够被恶意利用。通过上述一系列步骤,

43、模糊测试不仅能够揭示潜在的安全问题,还能评估这些问题模糊测试技术白皮书20对系统安全的具体影响。这样发现的漏洞可以转化为明确且可实施的安全增强措施,从而提高系统的整体安全性。2.2 模糊测试的分类如图 7 所示,根据测试者对被测软件内部结构的了解程度和访问权限的差异,模糊测试可分为黑盒、白盒和灰盒模糊测试。图 7 模糊测试的分类 黑盒模糊测试黑盒模糊测试黑盒模糊测试是最基础和传统的模糊测试形式。其核心特点是测试者对软件的内部工作原理几乎一无所知。测试完全基于对软件外在行为的观察,无需访问源代码或了解其内部结构。测试者通过向软件输入异常或随机数据,观察其反应,从而识别潜在的漏洞和缺陷。黑盒测试的

44、优势在于其简单性和直接性,能够迅速对软件进行广泛的测试覆盖。然而,由于对内部逻辑的了解有限,这种方法可能无法探测到更深层次的复杂安全模糊测试技术白皮书21问题。因此,黑盒测试适用于初步安全评估和快速检测明显的漏洞。白盒模糊测试白盒模糊测试白盒模糊测试与黑盒测试相反,测试者可以完全访问软件的内部逻辑和源代码。这种测试方法依赖于详细的应用程序分析技术,如静态代码分析和动态执行跟踪,能够深入探测软件的内部行为。白盒测试能够系统地识别由特定代码路径触发的漏洞,提供更高的测试覆盖率和深入的安全评估。然而,这种方法对测试者的专业知识要求较高,同时也需要较大的资源投入。白盒模糊测试特别适合于需要深入了解和评

45、估软件安全性的场景,如关键基础设施的软件评估和高安全性要求的应用程序测试。灰盒模糊测试灰盒模糊测试灰盒模糊测试结合了黑盒和白盒测试的优势,提供了一种平衡的方法。测试者对软件的内部信息有一定了解,但无需完全访问源代码。灰盒测试通常依赖于对部分代码结构的知识,如通过程序插桩收集运行时的反馈信息,以指导测试用例的生成和调整。这种方法既保持了黑盒测试的灵活性和快速性,又通过有限的内部视角提升了测试的效率和有效性。灰盒模糊测试适用于需要在有限资源和时间内进行有效安全评估的场景,是在实际应用中常用的一种方法。模糊测试作为一种重要的安全测试方法,通过不同的方式(黑盒、白盒、灰盒)为软件安全性提供了不同层次的

46、保护。每种测试方法都有其独特的优势和适用场景。在实模糊测试技术白皮书22际应用中,选择适当的模糊测试方法,结合具体的需求和资源,能够最大化测试效率和安全评估的覆盖范围。通过综合运用这些方法,能够更好地识别和修复软件中的潜在安全漏洞,提升软件的整体安全性和可靠性。2.3 模糊测试的关键技术模糊测试是一种有效的自动化测试技术,其通过生成大量随机或意外的输入数据,来发现软件系统中的潜在漏洞和弱点。为了实现这一目标,模糊测试依赖于多种关键技术,这些技术不仅提高了测试的效率和覆盖率,还增强了对复杂系统和未知漏洞的检测能力。以下是模糊测试的主要关键技术:图 8 模糊测试不同阶段关键技术2.3.1 预处理技

47、术在开始模糊测试流程之前,许多模糊测试工具需要执行一系列预处理步骤。这些步骤主要涉及对目标程序的插桩,目的是去除潜在的冗余配置,优化种子集,并创建能有效触发应用程序的测试案例。此外,预处理阶段还包括为接下来的输入生成(即输入生模糊测试技术白皮书23成阶段)做好准备,建立必要的模型。本文将详细探讨以下四种核心的预处理技术:程序插桩技术程序插桩技术程序插桩技术可以分为静态插桩和动态插桩两种类型。静态插桩在程序运行前的预处理阶段进行,通常作用于源代码或中间代码,并在编译时完成。这种方式的优势在于,处理是在运行前完成的,因此运行时的开销相对较低。如果程序依赖库文件,这些库也需要进行插桩,通常是通过使用

48、相同技术重新编译实现的。除了源代码,也有针对二进制代码的静态插桩工具。相比之下,动态插桩虽然在运行时开销更大,但它可以在程序运行时方便地对动态链接库进行插桩。当前,有多种著名的动态插桩工具,如 DynInst13、DynamoRIO42、Pin51、Valgrind52和 QEMU53。模糊测试工具可能支持一种或多种插桩技术。例如,AFL 既可以在源代码级别通过修改编译器实现静态插桩,也可以利用 QEMU 在二进制级别进行动态插桩。在采用动态插桩时,AFL 提供两种选项:一是默认情况下只对目标程序的可执行代码进行插桩;二是通过启用 AFL_INST_LIBS 选项,对目标程序及其所有外部库代码

49、进行插桩。后者虽然能增加代码的覆盖范围,但也可能扩大 AFL 对外部库函数的测试范围。通过这些方式,可以收集包括程序的抽象语法树(AST)14、程序调用图(CG)15和控制流图(CFG)16在内的各种执行信息。插桩技术能够详细跟踪程序的执行路径和覆盖范围,从而极大地提升测试的效果和效率。模糊测试技术白皮书24 种子选择技术种子选择技术种子选择技术在提升模糊测试效率中扮演着至关重要的角色。在每轮测试开始时,从种子池中选择合适的种子进行变异是一个关键步骤。通过有效的种子选择策略,可以挑选出高质量的种子作为初始测试用例,从而全面探索程序的各个部分。高效的种子选择策略不仅能显著提高代码覆盖率,还能增加

50、发现潜在漏洞的机会。为了解决这一问题,研究人员开发了多种方法和工具。一个常用的策略是寻找能最大化特定覆盖度量(如节点覆盖率)的最小化种子集合,这个过程被称为计算 minset。例如,如果一个种子集合 C 包括种子文件 s1 和 s2,它们覆盖了不同的程序地址。如果第三个种子文件 s3 能够覆盖 s1 和 s2 的所有地址,并且执行效率相当,那么仅使用 s3 进行测试将是更理想的选择,因为它能在更短的时间内测试更多的程序逻辑。这一理论得到了米勒研究的支持,该研究表明,代码覆盖率每提高 1%,漏洞发现率就会增加 0.92%。此外,这种策略还可以作为测试过程中的一个反馈更新机制,特别适合那些可以持续

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服