ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:240.50KB ,
资源ID:4456941      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4456941.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(matlab求微分方程的解-实验报告四.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

matlab求微分方程的解-实验报告四.doc

1、matlab求微分方程的解-实验报告四matlab与数学实验实验报告实验序号: 实验四 日期: 2015年 5 月 25 日班级 132132002姓名 彭婉婷学号 1321320057实验名称 求微分方程的解 问题背景描述实际应用问题通过数学建模所归纳而得到的方程,绝大多数都是微分方程,另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组)这就要求我们既要研究微分方程(组)的解析解法(精确解),更要研究微分方程(组)的数值解法(近似解)实验目的本实验将主要研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法实验原理与数学模型MATLAB7.11.0主要内

2、容(要点)1. 求微分方程的通解2. 求微分方程的通解3. 求微分方程组 在初始条件下的特解,并画出解函数的图形 4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为利用画图来比较两种求解器之间的差异5. 用 Euler 折线法求解微分方程初值问题的数值解(步长h取0.1),求解范围为区间0,2选做:6. 用四阶 Runge-Kutta 法求解微分方程初值问题的数值解(步长h取0.1),求解范围为区间0,3迭代法实验过程记录(含基本步骤、主要程序清单及异常情况记录等)1. 求微分方程的通解程序:clearsyms x y y=dsolve(x

3、2-1)*Dy+2*x*y=sin(x),x) 答案:y =-(C2 + cos(x)/(x2 - 1)2. 求微分方程的通解程序:clearsyms x y y=dsolve(D2y-2*Dy+5*y=exp(x)*sin(x),x) simplyify(x/y)weijiao 答案:y =(exp(x)*sin(x)/6 - (sin(3*x)*exp(x)/8 + (sin(5*x)*exp(x)/24 + C4*cos(2*x)*exp(x) + sin(2*x)*exp(x)*(cos(x)/4 - cos(3*x)/12 + 1/6) + C5*sin(2*x)*exp(x) 3.

4、 求微分方程组 在初始条件下的特解,并画出解函数的图形程序:clearsyms x y tx,y=dsolve(Dx+x+y=0,Dy+x-y=0,x(0)=1,y(0)=0,t)ezplot(x,y,0, 1)(t的取值,t是与x,y相关的,如果不给范围,则会默认为一个较大的区间)simplify(x)simplify(y)答案:x =exp(2(1/2)*t)/2 + 1/(2*exp(2(1/2)*t) - (2(1/2)*exp(2(1/2)*t)/4 + 2(1/2)/(4*exp(2(1/2)*t)y =2(1/2)/(4*exp(2(1/2)*t) - (2(1/2)*exp(2

5、(1/2)*t)/4图形:4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为利用画图来比较两种求解器之间的差异先编写函数文件verderpol.m:clearfunction xprime=verderpol(t,x)xprime=-x(1)-x(2); x(2)-x(1);再编写命令文件cleary0=1;0;t,x = ode45(verderpol,0,2,y0);x1=x(:,1);x2=x(:,2);plot(x1,x2,b-)hold ony0=1;0;t,x=ode23(verderpol,0,2,y0);x1=x(:,1);

6、x2=x(:,2);plot(x(:,1),x(:,2),r-);图形:两种求解器之间的差异:ode45大部分场合的首选算法ode23使用于精度较低的情形但在此题中并没有体现出差异。5. 用 Euler 折线法求解微分方程初值问题的数值解(步长h取0.1),求解范围为区间0,2程序:clearf=sym(y+2*x/y2);a=0;b=2;h=0.4;n=(b-a)/h+1;x=0;y=1;szj=x,y;for i=1:n-1y=y+h*subs(f,x,y,x,y);x=x+h;szj=szj;x,y;endszjplot(szj(:,1),szj(:,2)答案:szj = 0 1.000

7、0 0.1000 1.1000 0.2000 1.2010 0.3000 1.2934 0.4000 1.3728 0.5000 1.4359 0.6000 1.4781 0.7000 1.4921 0.8000 1.4644 0.9000 1.3662 1.0000 1.1217 1.1000 0.3836 1.2000 -25.3054 1.3000 -27.8358 1.4000 -30.6193 1.5000 -33.6812 1.6000 -37.0492 1.7000 -40.7541 1.8000 -44.8294 1.9000 -49.31232.0000 -54.2435图像

8、:6. 用四阶 Runge-Kutta 法求解微分方程初值问题的数值解(步长h取0.1),求解范围为区间0,3迭代法程序:clearf=sym(y-exp(x)*cos(x);a=0;b=3;h=0.1;n=(b-a)/h+1;x=0;y=1;szj=x,y;for i=1:n-1l1=subs(f,x,y,x,y);l2=subs(f,x,y,x+h/2,y+l1*h/2);l3=subs(f,x,y,x+h/2,y+l2*h/2);l4=subs(f,x,y,x+h,y+l3*h);y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=szj;x,y;endszjplot

9、(szj(:,1),szj(:,2)答案:szj = 0 1.0000 0.1000 0.9948 0.2000 0.9787 0.3000 0.9509 0.4000 0.9109 0.5000 0.8583 0.6000 0.7933 0.7000 0.7165 0.8000 0.6290 0.9000 0.5329 1.0000 0.4309 1.1000 0.3268 1.2000 0.2256 1.3000 0.1337 1.4000 0.0590 1.5000 0.0112 1.6000 0.0021 1.7000 0.0456 1.8000 0.1582 1.9000 0.359

10、0 2.0000 0.6702 2.1000 1.1171 2.2000 1.7283 2.3000 2.5364 2.4000 3.5774 2.5000 4.8916 2.6000 6.5231 2.7000 8.5204 2.8000 10.9359 2.9000 13.82603.0000 17.2510图形:实验结果报告与实验总结本实验主要研究微分方程(组)的解析解法(精确解)和微分方程(组)的数值解法(近似解)前两题主要用dslove语句即可运行成功。第3题求解微分方程组也用到了dslove语句,和ezplot画图,有一个疑点一直想不清楚,就是ezplot后面的范围0,1,用不同的取值图形就完全不相同,正确的取值应该如何选取?第4题用 ode23、ode45 求微分方程初值问题的数值解(近似解),用hold on直接就能在图上比较差异。5、6两题直接在原有程序更改步长和区间取值即可。教师评语实验成绩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服