ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:71KB ,
资源ID:4452140      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4452140.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023版高考数学二轮复习专题限时集训11圆锥曲线中的综合问题理.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023版高考数学二轮复习专题限时集训11圆锥曲线中的综合问题理.doc

1、专题限时集训(十一)圆锥曲线中的综合问题(建议用时:20分钟)1易错题已知椭圆C:1(ab0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)设直线l:ykxm与椭圆C交于M,N两点,O为坐标原点,若kOMkON,求原点O到直线l的距离的取值范围解(1)由题意知e,2b2,又a2b2c2,所以b1,a2,所以椭圆C的标准方程为y21.(2)设M(x1,y1),N(x2,y2),由得(4k21)x28kmx4m240.则(8km)24(4k21)(4m24)0,化简得m24k21.x1x2,x1x2,y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2,若kOMkON,则,即

2、4y1y25x1x2,所以4k2x1x24km(x1x2)4m25x1x2,则(4k25)x1x24km(x1x2)4m20,所以(4k25)4km4m20,化简得m2k2.由得0m2,k2.因为原点O到直线l的距离d,所以d21,又k2,所以0d2,解得0d.所以原点O到直线l的距离的取值范围为.2(2019北京高考)已知抛物线C:x22py经过点(2,1)(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点解(1)由抛物线C:x22py经过点(2

3、,1),得p2.所以抛物线C的方程为x24y,其准线方程为y1.(2)抛物线C的焦点为F(0,1)设直线l的方程为ykx1(k0)由得x24kx40.设M(x1,y1),N(x2,y2),则x1x24.直线OM的方程为yx.令y1,得点A的横坐标xA.同理得点B的横坐标xB.设点D(0,n),则,(n1)2(n1)2(n1)24(n1)2.令0,即4(n1)20,则n1或n3.综上,以AB为直径的圆经过y轴上的定点(0,1)和(0,3)题号内容押题依据1椭圆标准方程的求法,直线与椭圆的位置关系证明问题直线与椭圆的位置关系及椭圆方程的求解是高考常规性问题,注重双基,体现运算能力,证明问题、考查学

4、生的逻辑推理的素养,符合高考最近动态2待定系数法求曲线的方程,设而不求的思想,探索性问题探索性问题是一种动态问题,可以较好的考查学生的动手、动脑能力,而“设而不求”思想是解答圆锥曲线常用的方法,符合高考最新动态【押题1】已知椭圆C:1(ab0)的离心率为,右焦点为F,且该椭圆过点.(1)求椭圆C的方程;(2)当动直线l与椭圆C相切于点A,且与直线x相交于点B时,求证:FAB为直角三角形解(1)由题意得,1,又a2b2c2,所以b21,a24,即椭圆C的方程为y21.(2)由题意可得直线l的斜率存在,设l:ykxm,联立得(4k21)x28kmx4m240,判别式64k2m216(4k21)(m

5、21)0,得m24k210.设A(x1,y1),则x1,y1kx1mm,即A.易得B,F(,0),则,110,所以,即FAB为直角三角形,得证【押题2】如图,由部分抛物线y2mx1(m0,x0)和半圆x2y2r2(x0)所组成的曲线称为“黄金抛物线C”,若“黄金抛物线C”经过点(3,2)和.(1)求“黄金抛物线C”的方程;(2)设P(0,1)和Q(0,1),过点P作直线l与“黄金抛物线C”交于A,P,B三点,问是否存在这样的直线l,使得QP平分AQB?若存在,求出直线l的方程;若不存在,请说明理由解(1)因为“黄金抛物线C”过点(3,2)和,所以r21,43m1,解得m1.所以“黄金抛物线C”的方程为y2x1(x0)和x2y21(x0)(2)假设存在这样的直线l,使得QP平分AQB.显然直线l的斜率存在且不为0,结合题意可设直线l的方程为ykx1(k0),A(xA,yA),B(xB,yB),不妨令xA0xB.由消去y并整理,得k2x2(2k1)x0,所以xB,yB,即B,由xB0知k,所以直线BQ的斜率为kBQ.由消去y并整理,得(k21)x22kx0,所以xA,yA,即A,由xA0知k0,所以直线AQ的斜率为kAQ.因为QP平分AQB,且直线QP的斜率不存在,所以kAQkBQ0,即0,由0k,可得k1.所以存在直线l:y(1)x1,使得QP平分AQB.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服