ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:2.13MB ,
资源ID:4449605      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4449605.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(长沙市K郡双语实验中学高三最后一卷数学试卷含解析.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

长沙市K郡双语实验中学高三最后一卷数学试卷含解析.doc

1、2021-2022高考数学模拟试卷含解析 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知为实数集,,,则( ) A. B

2、. C. D. 2.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( ) A. B. C.1 D. 3.已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为(    ) A. B. C. 或 D. 或 4.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( ) A.45 B.50 C.55 D.60 5.已知四棱锥的底面为矩形,底面,点在线段上,

3、以为直径的圆过点.若,则的面积的最小值为( ) A.9 B.7 C. D. 6.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( ) A. B. C. D. 7.设,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 8.已知,则p是q的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 9.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( ) A. B. C. D

4、. 10.设复数满足,在复平面内对应的点的坐标为则(  ) A. B. C. D. 11.已知集合,,则( ) A. B. C. D. 12.函数的图像大致为( ). A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.如图,在平面四边形中,点,是椭圆短轴的两个端点,点在椭圆上,,记和的面积分别为,,则______. 14.某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为____________. 15.双曲线的焦距为_______

5、渐近线方程为________. 16.已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下: 研发费用(百万元) 2 3 6 10 13 15 18 21 销量(万盒) 1 1 2 2.5 3.5 3.5 4.5 6 (1)求与的相关

6、系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合); (2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望. 附:(1)相关系数 (2),,,. 18.(12分) 已知函数,. (Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)求函数在上的最小值; (Ⅲ)若函数,当时,的最大值为,求证:. 19.(12

7、分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则

8、生产成本增加13万元. (1)若选择生产线①,求生产成本恰好为18万元的概率; (2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由. 20.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项. (1)证明:数列是等差数列; (2)求数列的通项公式; (3)若,当时,的前项和为,求证:对任意,都有. 21.(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,,,(e是自然对数的底数). (1)求数列,的通项公式; (2)求数列的前n项和. 22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数

9、将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点. (1)求曲线的参数方程; (2)求面积的最大值. 参考答案 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.C 【解析】 求出集合,,,由此能求出. 【详解】 为实数集,,, 或, . 故选:. 【点睛】 本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题. 2.D 【解析】 根据以直角边为直径的

10、半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值. 【详解】 由于直角边为直径的半圆的面积之比为,所以,即,所以,所以. 故选:D 【点睛】 本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题. 3.D 【解析】 由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程. 【详解】 由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q= 故选:D. 【点睛】 本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练. 4.D 【解析】 根据频率分布直方图中频率=小矩形的高

11、×组距计算成绩低于60分的频率,再根据样本容量求出班级人数. 【详解】 根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30, ∴样本容量(即该班的学生人数)是60(人). 故选:D. 【点睛】 本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题 5.C 【解析】 根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得. 【详解】 设,,则. 因为平面,平面,所以. 又,,所以平面,则. 易知,. 在中,, 即,化简得. 在中,,. 所以. 因为

12、 当且仅当,时等号成立,所以. 故选:C. 【点睛】 本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题. 6.A 【解析】 由已知可得到直线的倾斜角为,有,再利用即可解决. 【详解】 由F到直线的距离为,得直线的倾斜角为,所以, 即,解得. 故选:A. 【点睛】 本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题. 7.B 【解析】 先解不等式化简两个条件,利用集合法判断充分必要条件即可 【详解】 解不等式可得, 解绝对值不等式可得, 由

13、于为的子集, 据此可知“”是“”的必要不充分条件. 故选:B 【点睛】 本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题. 8.B 【解析】 根据诱导公式化简再分析即可. 【详解】 因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件. 故选:B 【点睛】 本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题. 9.C 【解析】 直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值. 【详解】 设抛物线的准线为, 直线恒过定点, 如图过A、B分别作于M,于N, 由,则, 点B

14、为AP的中点、连接OB,则, ∴,点B的横坐标为, ∴点B的坐标为,把代入直线, 解得, 故选:C. 【点睛】 本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题. 10.B 【解析】 根据共轭复数定义及复数模的求法,代入化简即可求解. 【详解】 在复平面内对应的点的坐标为,则, , ∵, 代入可得, 解得. 故选:B. 【点睛】 本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 11.B 【解析】 求出集合,利用集合的基本运算即可得到结论. 【详解】 由,得,

15、则集合, 所以,. 故选:B. 【点睛】 本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题. 12.A 【解析】 本题采用排除法: 由排除选项D; 根据特殊值排除选项C; 由,且无限接近于0时, 排除选项B; 【详解】 对于选项D:由题意可得, 令函数 , 则,; 即.故选项D排除; 对于选项C:因为,故选项C排除; 对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除; 故选项:A 【点睛】 本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.

16、 二、填空题:本题共4小题,每小题5分,共20分。 13. 【解析】 依题意易得A、B、C、D四点共圆且圆心在x轴上,然后设出圆心,由圆的方程与椭圆方程联立得到B的横坐标,进一步得到D横坐标,再由计算比值即可. 【详解】 因为,所以A、B、C、D四点共圆,直径为,又A、C关于x轴对称, 所以圆心E在x轴上,设圆心E为,则圆的方程为,联立椭圆方程 消y得,解得,故B的横坐标为,又B、D中点是E,所以D的横坐标为, 故. 故答案为:. 【点睛】 本题考查椭圆中的四点共圆及三角形面积之比的问题,考查学生基本计算能力及转化与化归思想,本题关键是求出B、D横坐标,是一道有区分度的压轴

17、填空题. 14. 【解析】 采用列举法计算古典概型的概率. 【详解】 抛掷一枚硬币两次共有4种情况,即(正,正),(正,反),(反,正),(反,反), 在家学习只有1种情况,即(正,正),故该同学在家学习的概率为. 故答案为: 【点睛】 本题考查古典概型的概率计算,考查学生的基本计算能力,是一道基础题. 15.6 【解析】 由题得 所以焦距,故第一个空填6. 由题得渐近线方程为.故第二个空填. 16. 【解析】 考查更为一般的问题:设P为椭圆C:上的动点,为椭圆的两个焦点,为△PF1F2的内心,求点I的轨迹方程. 解法一:如图,设内切圆I与F1F

18、2的切点为H,半径为r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,则. 直线IF1与IF2的斜率之积:, 而根据海伦公式,有△PF1F2的面积为 因此有. 再根据椭圆的斜率积定义,可得I点的轨迹是以F1F2为长轴, 离心率e满足的椭圆, 其标准方程为. 解法二:令,则.三角形PF1F2的面积: , 其中r为内切圆的半径,解得. 另一方面,由内切圆的性质及焦半径公式得: 从而有.消去θ得到点I的轨迹方程为: . 本题中:,代入上式可得轨迹方程为:. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(1)0.98;可

19、用线性回归模型拟合.(2) 【解析】 (1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果; (2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,,三类剂型合格的种类数为,服从二项分布,利用二项分布的期望公式求解即可. 【详解】 解:(1)由题意可知, , 由公式, ,∴与的关系可用线性回归模型拟合; (2)药品的每类剂型经过两次检测后合格的概率分别为 ,,, 由题意, , . 【点睛】 本题考查相关系数的求解,考查二项分布的期望,是中档题. 18.(Ⅰ)(Ⅱ)见解析;(Ⅲ)见解析. 【解析】 试题分析:(Ⅰ)

20、由题, 所以故,,代入点斜式可得曲线在处的切线方程; (Ⅱ)由题 (1)当时,在上单调递增. 则函数在上的最小值是 (2)当时,令,即,令,即 (i)当,即时,在上单调递增, 所以在上的最小值是 (ii)当,即时,由的单调性可得在上的最小值是 (iii)当,即时,在上单调递减,在上的最小值是 (Ⅲ)当时, 令,则是单调递减函数. 因为,, 所以在上存在,使得,即 讨论可得在上单调递增,在上单调递减. 所以当时,取得最大值是 因为,所以由此可证 试题解析:(Ⅰ)因为函数,且, 所以, 所以 所以, 所以曲线在处的切线方程是,即 (Ⅱ)因为函数,所

21、以 (1)当时,,所以在上单调递增. 所以函数在上的最小值是 (2)当时,令,即,所以 令,即,所以 (i)当,即时,在上单调递增, 所以在上的最小值是 (ii)当,即时,在上单调递减,在上单调递增, 所以在上的最小值是 (iii)当,即时,在上单调递减, 所以在上的最小值是 综上所述,当时,在上的最小值是 当时,在上的最小值是 当时,在上的最小值是 (Ⅲ)因为函数,所以 所以当时, 令,所以是单调递减函数. 因为,, 所以在上存在,使得,即 所以当时,;当时, 即当时,;当时, 所以在上单调递增,在上单调递减. 所以当时,取得最大值是

22、 因为,所以 因为,所以 所以 19.(1)0.0294.(2)应选生产线②.见解析 【解析】 (1)由题意转化条件得A工序不出现故障B工序出现故障,利用相互独立事件的概率公式即可得解; (2)分别算出两个生产线增加的生产成本的期望,进而求出两个生产线的生产成本期望值,比较期望值即可得解. 【详解】 (1)若选择生产线①,生产成本恰好为18万元,即A工序不出现故障B工序出现故障,故所求的概率为. (2)若选择生产线①,设增加的生产成本为(万元),则的可能取值为0,2,3,5. , , , , 所以万元; 故选生产线①的生产成本期望值为 (万元). 若选生产线

23、②,设增加的生产成本为(万元),则的可能取值为0,8,5,13. , , , , 所以, 故选生产线②的生产成本期望值为 (万元), 故应选生产线②. 【点睛】 本题考查了相互独立事件的概率,考查了离散型随机变量期望的应用,属于中档题. 20.(1)见解析(2)(3)见解析 【解析】 (1)令可得,即.得到,再利用通项公式和前n项和的关系求解, (2)由(1)知,.设等比数列的公比为,所以,再根据恰为与的等比中项求解, (3)由(2)得到时,, ,求得,再代入证明。 【详解】 (1)解:令可得,即.所以. 时,可得, 当时,所以. 显然当时,满足上式.

24、所以. ,所以数列是等差数列, (2)由(1)知,. 设等比数列的公比为,所以 , 恰为与的等比中项, 所以, 解得,所以 (3)时,,,而时,, , 所以当时,. 当时,, ∴对任意,都有, 【点睛】 本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题, 21.(1),(2) 【解析】 (1)当时,,与作差可得,即可得到数列是首项为1,公差为1的等差数列,即可求解;对取自然对数,则,即是以1为首项,以2为公比的等比数列,即可求解; (2)由(1)可得,再利用错位相减

25、法求解即可. 【详解】 解:(1)因为,,① 当时,,解得; 当时,有,② 由①②得,, 又,所以, 即数列是首项为1,公差为1的等差数列,故, 又因为,且,取自然对数得,所以, 又因为, 所以是以1为首项,以2为公比的等比数列, 所以,即 (2)由(1)知,, 所以,③ ,④ ③减去④得: , 所以 【点睛】 本题考查由与的关系求通项公式,考查错位相减法求数列的和. 22.(1)(为参数);(2). 【解析】 (1)根据伸缩变换结合曲线的参数方程可得出曲线的参数方程; (2)将曲线的方程化为普通方程,然后化为极坐标方程,设点的极坐标为,点的极坐标为

26、将这两点的极坐标代入椭圆的极坐标方程,得出和关于的表达式,然后利用三角恒等变换思想即可求出面积的最大值. 【详解】 (1)由于曲线的参数方程为(为参数), 将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线, 则曲线的参数方程为(为参数); (2)将曲线的参数方程化为普通方程得, 化为极坐标方程得,即, 设点的极坐标为,点的极坐标为, 将这两点的极坐标代入椭圆的极坐标方程得,, 的面积为, 当时,的面积取到最大值. 【点睛】 本题考查参数方程、极坐标方程与普通方程的互化,考查了伸缩变换,同时也考查了利用极坐标方程求解三角形面积的最值问题,要熟悉极坐标方程所适用的基本类型,考查分析问题和解决问题的能力,属于中等题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服