ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:41.14KB ,
资源ID:4449055      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4449055.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022年普通高等学校招生全国统一考试数学(理)试题(湖北卷详解).docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年普通高等学校招生全国统一考试数学(理)试题(湖北卷详解).docx

1、2022湖北卷(理科数学)12022湖北卷 i为虚数单位,()A1B1 CiDi1A解析1.应选A.22022湖北卷 假设二项式的展开式中的系数是84,那么实数a()A2B.C1D.2C解析展开式中含的项是T6C(2x)2C22a5x3,故含的项的系数是C22a584,解得a1.应选C.32022湖北卷 U为全集,A,B是集合,那么“存在集合C使得AC,BUC是“AB的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件3C解析假设存在集合C使得AC,BUC,那么可以推出AB;假设AB,由维思图可知,一定存在CA,满足AC,BUC,故“存在集合C使得AC,BUC是“AB的充

2、要条件应选C.42022湖北卷 根据如下样本数据:x345678y4.02.50.50.52.03.0得到的回归方程为bxa,那么()Aa0,b0Ba0,b0Ca0Da0,b04B解析作出散点图如下:观察图象可知,回归直线bxa的斜率b0.故a0,br2,椭圆的长半轴长为a1,双曲线的实半轴长为a2,椭圆、双曲线的离心率分别为e1,e2.那么由椭圆、双曲线的定义,得r1r22a1,r1r22a2,平方得4arr2r1r2,4ar2r1r2r.又由余弦定理得4c2rrr1r2,消去r1r2,得a3a4c2,即4.所以由柯西不等式得.所以.应选A.102022湖北卷 函数f(x)是定义在R上的奇函

3、数,当x0时,f(x)(|xa2|x2a2|3a2)假设xR,f(x1)f(x),那么实数a的取值范围为()A.B.C.D.10B解析因为当x0时,f(x),所以当0xa2时,f(x)x;当a2x0,对任意a0,b0,假设经过点(a,f(a),(b,f(b)的直线与x轴的交点为(c,0),那么称c为a,b关于函数f(x)的平均数,记为Mf(a,b),例如,当f(x)1(x0)时,可得Mf(a,b)c,即Mf(a,b)为a,b的算术平均数(1)当f(x)_(x0)时,Mf(a,b)为a,b的几何平均数;(2)当f(x)_(x0)时,Mf(a,b)为a,b的调和平均数.(以上两空各只需写出一个符合

4、要求的函数即可)14(1)(2)x(或填(1)k1;(2)k2x,其中k1,k2为正常数)解析设A(a,f(a),B(b,f(b),C(c,0),那么此三点共线:(1)依题意,c,那么,即.因为a0,b0,所以化简得,故可以选择f(x)(x0);(2)依题意,c,那么,因为a0,b0,所以化简得,故可以选择f(x)x(x0)152022湖北卷 (选修41:几何证明选讲)如图13,P为O外一点,过P点作O的两条切线,切点分别为A,B,过PA的中点Q作割线交O于C,D两点,假设QC1,CD3,那么PB_图13154解析由切线长定理得QA2QCQD1(13)4,解得QA2.故PBPA2QA4.162

5、022湖北卷 (选修44:坐标系与参数方程)曲线C1的参数方程是(t为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是2,那么C1与C2交点的直角坐标为_16.解析 由消去t得yx(x0),即曲线C1的普通方程是yx(x0);由2,得24,得x2y24,即曲线C2的直角坐标方程是x2y24.联立解得故曲线C1与C2的交点坐标为.17、2022湖北卷 某实验室一天的温度(单位:)随时间t(单位:h)的变化近似满足函数关系:f(t)10costsint,t0,24)(1)求实验室这一天的最大温差(2)假设要求实验室温度不高于11,那么在哪段时间实验室需要降温17解:(

6、1)因为f(t)102102sin,又0t24,所以t11时,实验室需要降温由(1)得f(t)102sin,故有102sin11,即sin.又0t24,因此t,即10t60n800假设存在,求n的最小值;假设不存在,说明理由18解:(1)设数列an的公差为d,依题意得,2,2d,24d成等比数列,故有(2d)22(24d),化简得d24d0,解得d0或d4.当d0时,an2;当d4时,an2(n1)44n2.从而得数列an的通项公式为an2或an4n2.(2)当an2时,Sn2n,显然2n60n800成立当an4n2时,Sn2n2.令2n260n800,即n230n4000,解得n40或n60

7、n800成立,n的最小值为41.综上,当an2时,不存在满足题意的正整数n;当an4n2时,存在满足题意的正整数n,其最小值为41.19、2022湖北卷 如图14,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DPBQ(02)(1)当1时,证明:直线BC1平面EFPQ.(2)是否存在,使面EFPQ与面PQMN所成的二面角为直二面角假设存在,求出的值;假设不存在,说明理由图1419解:方法一(几何方法):(1)证明:如图,连接AD1,由ABCDA1B1C1D1是正方体,知BC1AD1.当1时,P是

8、DD1的中点,又F是AD的中点,所以FPAD1,所以BC1FP.而FP平面EFPQ,且BC1平面EFPQ,故直线BC1平面EFPQ.图图(2)如图,连接BD.因为E,F分别是AB,AD的中点,所以EFBD,且EFBD.又DPBQ,DPBQ,所以四边形PQBD是平行四边形,故PQBD,且PQBD,从而EFPQ,且EFPQ.在RtEBQ和RtFDP中,因为BQDP,BEDF1,于是EQFP,所以四边形EFPQ也是等腰梯形同理可证四边形PQMN也是等腰梯形分别取EF,PQ,MN的中点为H,O,G,连接OH,OG,那么GOPQ,HOPQ,而GOHOO,故GOH是面EFPQ与面PQMN所成的二面角的平面

9、角假设存在,使面EFPQ与面PQMN所成的二面角为直二面角,那么GOH90.连接EM,FN,那么由EFMN,且EFMN知四边形EFNM是平行四边形连接GH,因为H,G是EF,MN的中点,所以GHME2.在GOH中,GH24,OH2122,OG21(2)2(2)2,由OG2OH2GH2,得(2)224,解得1,故存在1,使面EFPQ与面PQMN所成的二面角为直二面角方法二(向量方法):以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图所示的空间直角坐标系由得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,)图(2,0,2),FP(1,0,)

10、,FE(1,1,0)(1)证明:当1时,FP(1,0,1),因为(2,0,2),所以2,即BC1FP.而FP平面EFPQ,且BC1平面EFPQ,故直线BC1平面EFPQ.(2)设平面EFPQ的一个法向量为n(x,y,z),那么由可得于是可取n(,1)同理可得平面MNPQ的一个法向量为m(2,2,1)假设存在,使面EFPQ与面PQMN所成的二面角为直二面角,那么mn(2,2,1)(,1)0,即(2)(2)10,解得1.故存在1,使面EFPQ与面PQMN所成的二面角为直二面角(1)求未来4年中,至多有1年的年入流量超过120的概率(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受

11、年入流量X限制,并有如下关系:年入流量X40X120发电机最多可运行台数123假设某台发电机运行,那么该台年利润为5000万元;假设某台发电机未运行,那么该台年亏损800万元,欲使水电站年总利润的均值到达最大,应安装发电机多少台20解:(1)依题意,p1P(40X120)0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为pC(1p3)4C(1p3)3p30.9440.930.10.9477.(2)记水电站年总利润为Y(单位:万元)安装1台发电机的情形由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y5000,E(Y)500015000.安装2台发电机的

12、情形依题意,当40X80时,一台发电机运行,此时Y50008004200,因此P(Y4200)P(40X80)p10.2;当X80时,两台发电机运行,此时Y5000210000,因此P(Y10000)P(X80)p2p30.8.由此得Y的分布列如下:Y420010 000P0.20.8所以,E(Y)42000.2100000.88840.安装3台发电机的情形依题意,当40X80时,一台发电机运行,此时Y500016003400,因此P(Y3400)P(40X120时,三台发电机运行,此时Y5000315000,因此P(Y15000)P(X120)p30.1.由此得Y的分布列如下:Y340092

13、0015 000P0.20.70.1所以,E(Y)34000.292000.7150000.18620.综上,欲使水电站年总利润的均值到达最大,应安装发电机2台21、2022湖北卷 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围21解:(1)设点M(x,y),依题意得|MF|x|1,即|x|1,化简整理得y22(|x|x)故点M的轨迹C的方程为y2(2)在点M的轨迹C中,记C1:y24x,C2:y0(x0)依题

14、意,可设直线l的方程为y1k(x2)由方程组可得ky24y4(2k1)0.当k0时,y1.把y1代入轨迹C的方程,得x.故此时直线l:y1与轨迹C恰好有一个公共点.当k0时,方程的判别式16(2k2k1)设直线l与x轴的交点为(x0,0),那么由y1k(x2),令y0,得x0.(i)假设由解得k.即当k(,1)时,直线l与C1没有公共点,与C2有一个公共点故此时直线l与轨迹C恰好有一个公共点(ii)假设或由解得k或k0.即当k时,直线l与C1只有一个公共点当k时,直线l与C1有两个公共点,与C2没有公共点故当k时,直线l与轨迹C恰好有两个公共点(iii)假设由解得1k或0k0,即0xe时,函数

15、f(x)单调递增;当f(x)e时,函数f(x)单调递减故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,)(2)因为e3,所以eln3eln,lneln3,即ln3elne,lneln3.于是根据函数ylnx,yex,yx在定义域上单调递增,可得3ee3,e3e3.故这6个数的最大数在3与3之中,最小数在3e与e3之中由e3及(1)的结论,得f()f(3)f(e),即.由,得ln33;由,得ln3elne3,所以3ee3.综上,6个数中的最大数是3,最小数是3e.(3)由(2)知,3ee33,3ee3.又由(2)知,得ee.故只需比较e3与e和e与3的大小由(1)知,当0xe时,f(x)f(e),即.在上式中,令x,又e,那么ln,从而2ln2.由得,elne2.72.7(20.88)3.0243,即eln3,亦即lnelne3,所以e366e,即3ln,所以e3.综上可得,3ee3ee33,即这6个数从小到大的顺序为3e,e3,e,e,3,3.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服