ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:170KB ,
资源ID:4446928      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4446928.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022高考数学一轮复习课后限时集训41综合法分析法反证法数学归纳法理.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022高考数学一轮复习课后限时集训41综合法分析法反证法数学归纳法理.doc

1、课后限时集训41综合法、分析法、反证法、数学归纳法建议用时:45分钟一、选择题1用反证法证明命题:“三角形三个内角至少有一个不大于60”时,应假设()A三个内角都不大于60B三个内角都大于60C三个内角至多有一个大于60D三个内角至多有两个大于60B至少有一个包含“一个、两个和三个”,故其对立面三个内角都大于60,故选B.2分析法又称执果索因法,已知x0,用分析法证明1Bx24Cx20Dx21C因为x0,所以要证1,只需证()22,即证00,因为x0,所以x20成立,故原不等式成立3(2019哈尔滨模拟)用数学归纳法证明不等式“1n(nN,n2)”时,由nk(k2)时不等式成立,推证nk1时,

2、左边应增加的项数是()A2k1B2k1C2kD2k1Cnk1时,左边1,增加了,共(2k11)(2k1)2k项,故选C.4设f(x)是定义在R上的奇函数,且当x0时,f(x)单调递减,若x1x20,则f(x1)f(x2)的值()A恒为负值B恒等于零C恒为正值D无法确定正负A由f(x)是定义在R上的奇函数,且当x0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x1x20,可知x1x2,f(x1)f(x2)f(x2),则f(x1)f(x2)0,故选A.5设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)k2成立时,总可推出f(k1)(k1)2成立”那么,下列命题总成立的是

3、()A若f(1)1成立,则f(10)100成立B若f(2)4成立,则f(1)1成立C若f(3)9成立,则当k1时,均有f(k)k2成立D若f(4)16成立,则当k4时,均有f(k)k2成立D由条件可知不等式的性质只对大于等于号成立,所以A错误;若f(1)1成立,则得到f(2)4,与f(2)2要比较与2的大小,只需比较()2与(2)2的大小,只需比较672与854的大小,只需比较与2的大小,只需比较42与40的大小,4240,2.7用数学归纳法证明不等式的过程中,由nk推导nk1时,不等式的左边增加的式子是_不等式的左边增加的式子是.8若二次函数f(x)4x22(p2)x2p2p1,在区间1,1

4、内至少存在一点c,使f(c)0,则实数p的取值范围是_若二次函数f(x)0在区间1,1内恒成立,则解得p3或p,故满足题干要求的p的取值范围为.三、解答题9已知x,y,z是互不相等的正数,且xyz1,求证:8.证明因为x,y,z是互不相等的正数,且xyz1,所以1,1,1,由,得8.10设数列an是公比为q的等比数列,Sn是它的前n项和(1)求证:数列Sn不是等比数列;(2)数列Sn是等差数列吗?为什么?解(1)证明:假设数列Sn是等比数列,则SS1S3,即a(1q)2a1a1(1qq2),因为a10,所以(1q)21qq2,即q0,这与公比q0矛盾,所以数列Sn不是等比数列(2)当q1时,S

5、nna1,故Sn是等差数列;当q1时,Sn不是等差数列假设Sn是等差数列,则2S2S1S3,即2a1(1q)a1a1(1qq2),由于a10,2(1q)2qq2,即qq2.得q0,这与公比q0矛盾综上,当q1时,数列Sn是等差数列;当q1时,数列Sn不是等差数列1设x,y,z0,则三个数,()A都大于2B至少有一个大于2C至少有一个不小于2D至少有一个不大于2C因为6,当且仅当xyz时等号成立所以三个数中至少有一个不小于2,故选C.2已知函数f(x)x,a,b是正实数,Af,Bf(),Cf,则A,B,C的大小关系为()AABCBACBCBCADCBAA,又f(x)x在R上是减函数,ff()f,

6、即ABC.3设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点若用f(n)表示这n条直线交点的个数,则f(4)_;当n4时,f(n)_(用n表示)5(n1)(n2)由题意知f(3)2,f(4)5,f(5)9,可以归纳出每增加一条直线,交点增加的个数为原有直线的条数,所以f(4)f(3)3,f(5)f(4)4,猜测得出f(n)f(n1)n1(n4)有f(n)f(3)34(n1),所以f(n)(n1)(n2)4在数列an,bn中,a12,b14,且an,bn,an1成等差数列,bn,an1,bn1成等比数列(nN)(1)求a2,a3,a4及b2,b3,b4,由此猜想a

7、n,bn的通项公式,并证明你的结论(2)证明:.解(1)由条件得2bnanan1,abnbn1.由此可得a26,b29,a312,b316,a420,b425.猜测ann(n1),bn(n1)2.用数学归纳法证明:当n1时,由上可得结论成立假设当nk(kN,k1)时,结论成立,即akk(k1),bk(k1)2.那么当nk1时,ak12bkak2(k1)2k(k1)(k1)(k2),bk1(k2)2.所以当nk1时,结论也成立由,可知ann(n1),bn(n1)2对一切正整数都成立(2).当n2时,由(1)知anbn(n1)(2n1)2(n1)n.故.综上,原不等式成立1(2019广州模拟)十七

8、世纪法国数学家费马提出猜想:“当整数n2时,关于x,y,z的方程xnynzn没有正整数解”经历三百多年,于二十世纪九十年代中期由英国数学家安德鲁怀尔斯证明了费马猜想,使它终成费马大定理,则下面说法正确的是()A至少存在一组正整数组(x,y,z)使方程x3y3z3有解B关于x,y的方程x3y31有正有理数解C关于x,y的方程x3y31没有正有理数解D当整数n3时,关于x,y,z的方程xnynzn没有正实数解C由于B,C两个命题是对立的,故正确选项是这两个选项中的一个假设关于x,y的方程x3y31有正有理数解,故x,y可写成整数比值的形式,不妨设x,y,其中m,n为互质的正整数,a,b为互质的正整

9、数代入方程得1,两边乘以a3n3得,(am)3(bn)3(an)3,由于am,bn,an都是正整数,这与费马大定理矛盾,故假设不成立,所以关于x,y的方程x3y31没有正有理数解故选C.2已知xi0(i1,2,3,n),我们知道(x1x2)4成立(1)求证:(x1x2x3)9.(2)同理我们也可以证明出(x1x2x3x4)16.由上述几个不等式,请你猜测一个与x1x2xn和(n2,nN)有关的不等式,并用数学归纳法证明解(1)证明:法一:(x1x2x3)339(当且仅当x1x2x3时,等号成立)法二:(x1x2x3)332229(当且仅当x1x2x3时,等号成立)(2)猜想:(x1x2xn)n2(n2,nN)证明如下:当n2时,由已知得猜想成立;假设当nk(k2,kN)时,猜想成立,即(x1x2xk)k2,则当nk1时,(x1x2xkxk1)(x1x2xk)(x1x2xk)xk11k2(x1x2xk)xk11k21k2221k22k1(k1)2,所以当nk1时不等式成立综合可知,猜想成立

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服