1、第25讲 切线判定定理的应用题一:如图在O中,半径OAOB,C是O上的一点,连接AC交OB于点D,P是OB延长线上一点,且满足PD = PC,求证:PC是O的切线题二:已知:如图,在O中,OA和OB是半径,且AOOB,弦AC交OB于M,在OB的延长线上取一点D,使DCM = DMC求证:CD是O的切线题三:如图,已知AB为O的直径,BC为O的弦,BDCE,交直线CE于D点,如果1 = 2求证:CE为O的切线题四:如图,点B、C、D都在半径为6的O上,过点C作ACBD交OB的延长线于点A,连接CD,已知CDB = OBD = 30求证:AC是O的切线题五:如图直角坐标系中,已知A(8,0),B(
2、0,6),点M在线段AB上如果点M是线段AB的中点,且M的半径为4,求证:直线OB是M的切线题六:如图,ABC是O的内接三角形如图,若AC是O的直径,BAC = 60,延长BA到点D,使得DA =BA,过点D作直线lBD,垂足为点D,作OFl于F,CEl于E求证:直线l为O的切线第25讲 切线判定定理的应用题一:见详解详解:连接OC,AOOB,AOB = 90,ADO+OAD = 90,OA = OC,PD = PC,OAD = OCD,PCD = PDC,PDC = ADO,OCA+PCD = 90,OCPC,OC为O半径,PC是O的切线题二:见详解 详解:连接OC,AOOB,AOM = 9
3、0,OAM+OMA = 90,DCM = DMC,DMC = OMA,又OAM = OCM,DCM+OCM = 90,OCCD,CD是O的切线题三:见详解详解:连接OC, OB = OC,OCB = 1 1 = 2,OCB = 2,OCBD BDCE,OCCE, CE为O的切线题四:见详解 详解:连接OC,交BD于E,CDB = 30,COB = 2CDB = 60,CDB = OBD,CDAB,又ACBD,四边形ABDC为平行四边形,A = D = 30,OCA = 180ACOB = 90,即OCAC,又OC是O的半径,AC是O的切线题五:见详解详解:设线段OB的中点为D,连结MD点M是线段AB的中点,MDAO,MD =AO =8 = 4 = 半径MDB = AOB = 90,MDOB,直线OB是M的切线题六:见详解详解:OFl,CEl,ADOFCE,AO = OC,DF = FE,OF =(AD+CE),设AD = a,则AB = 2AD = 2a,AC是直径,ABC = 90,lBD,BDE = 90,ABC = BDE = CED = 90,四边形BDEC是矩形,CE = BD = 3a,OF = 2a,在RtABC中,ABC = 90,BAC = 60,AB = 2a,AC = 4a,OF = OA = 2a,直线l是O切线