ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:310KB ,
资源ID:4433588      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4433588.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022高考数学一轮复习课后限时集训4函数及其表示理.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022高考数学一轮复习课后限时集训4函数及其表示理.doc

1、课后限时集训4函数及其表示建议用时:45分钟一、选择题1下列所给图像是函数图像的个数为() A1B2C3D4B中当x0时,每一个x的值对应两个不同的y值,因此不是函数图像,中当xx0时,y的值有两个,因此不是函数图像,中每一个x的值对应唯一的y值,因此是函数图像2(2019成都模拟)函数f(x)log2(12x)的定义域为()ABC(1,0)D(,1)D由12x0,且x10,得x且x1,所以函数f(x)log2(12x)的定义域为(,1).3已知f2x5,且f(a)6,则a等于()A.B C.DA令tx1,则x2t2,f(t)2(2t2)54t1,则4a16,解得a.4若二次函数g(x)满足g

2、(1)1,g(1)5,且图像过原点,则g(x)的解析式为()Ag(x)2x23xBg(x)3x22xCg(x)3x22xDg(x)3x22xB设g(x)ax2bxc(a0),g(1)1,g(1)5,且图像过原点,解得g(x)3x22x.5已知函数f(x)且f(x0)1,则x0()A0B4 C0或4D1或3C当x01时,由f(x0)2x01,得x00(满足x01);当x01时,由f(x0)log3(x01)1,得x013,则x04(满足x01),故选C.二、填空题6若函数yf(x)的定义域为0,2,则函数g(x)的定义域是_0,1)由02x2,得0x1,又x10,即x1,所以0x1,即g(x)的

3、定义域为0,1)7设函数f(x)则f(f(2)_,函数f(x)的值域是_3,)f(2),f(f(2)f2.当x1时,f(x)(0,1),当x1时,f(x)3,),f(x)3,)8若f(x)对任意xR恒有2f(x)f(x)3x1,则f(1)_.2由题意可知解得f(1)2.三、解答题9设函数f(x)且f(2)3,f(1)f(1)(1)求函数f(x)的解析式;(2)在如图所示的直角坐标系中画出f(x)的图像解(1)由f(2)3,f(1)f(1),得解得所以f(x)(2)函数f(x)的图像如图所示10行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离在某种路面上,某

4、种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:ymxn(m,n是常数)如图是根据多次实验数据绘制的刹车距离y(m)与汽车的车速x(km/h)的关系图(1)求出y关于x的函数解析式;(2)如果要求刹车距离不超过25.2 m,求行驶的最大速度解(1)由题意及函数图像,得解得m,n0,所以y(x0)(2)令25.2,得72x70.x0,0x70.故行驶的最大速度是70 km/h.1设函数f(x)若f 2,则实数n的值为()AB CDD因为f 2nn,当n1,即n时,f 2n2,解得n,不符合题意;当n1,即n时,f log22,即n4,解得n,符合题意,故选D.2已知函数f(x

5、)若af(a)f(a)0,则实数a的取值范围为()A(1,)B(2,)C(,1)(1,)D(,2)(2,)D当a0时,不等式af(a)f(a)0化为a2a3a0,解得a2.当a0时,不等式af(a)f(a)0化为a22a0,解得a2.综上可得实数a的取值范围为(,2)(2,)3设函数f(x)若f(x)f(1)恒成立,则实数a的取值范围为()A1,2B0,2C1,)D2,)A若f(x)f(1)恒成立,则f(1)是f(x)的最小值,则当x1时,f(x)f(1)恒成立,又函数y(xa)21的图像的对称轴为直线xa,所以a1.由分段函数性质得(1a)21ln 1,得0a2.综上可得,实数a的取值范围为

6、1a2,故选A.4(2019平顶山模拟)已知具有性质:ff(x)的函数,我们称为满足“倒负”变换的函数,下列函数:f(x)x;f(x)x;f(x)其中满足“倒负”变换的函数是_(填序号)对于,f(x)x,fxf(x),满足题意;对于,fxf(x),不满足题意;对于,f即f故ff(x),满足题意综上可知,满足“倒负”变换的函数是.1设f(x)若f(a)f(a1),则f()A2B4C6D8 C当0a1时,a11,f(a),f(a1)2(a11)2a,f(a)f(a1),2a,解得a或a0(舍去)ff(4)2(41)6.当a1时,a12,f(a)2(a1),f(a1)2(a11)2a,2(a1)2a

7、,无解综上,f6.2已知x为实数,用x表示不超过x的最大整数,例如1.21,1.22,11.对于函数f(x),若存在mR且mZ,使得f(m)f(m),则称函数f(x)是函数(1)判断函数f(x)x2x,g(x)sin x是否是函数(只需写出结论);(2)已知f(x)x,请写出a的一个值,使得f(x)为函数,并给出证明解(1)f(x)x2x是函数,g(x)sin x不是函数(2)法一:取k1,a(1,2),则令m1,m,此时f f f(1),所以f(x)是函数证明:设kN,取a(k2,k2k),令mk,m,则一定有mmk(0,1),且f(m)f(m),所以f(x)是函数法二:取k1,a(0,1),则令m1,m,此时f f f(1),所以f(x)是函数证明:设kN,取a(k2k,k2),令mk,m,则一定有mm(k)(0,1),且f(m)f(m),所以f(x)是函数

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服