ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:55KB ,
资源ID:4433519      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4433519.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高优指导2021版高考数学一轮复习大题专项练5高考中的解析几何文北师大版.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高优指导2021版高考数学一轮复习大题专项练5高考中的解析几何文北师大版.doc

1、高考大题专项练5高考中的解析几何高考大题专项练第10页1.已知椭圆C:x2+2y2=4.设O为原点,若点A在椭圆C上,点B在直线y=2上,且OAOB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.解:直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x00.因为OAOB,所以=0,即tx0+2y0=0,解得t=-.当x0=t时,y0=-,代入椭圆C的方程,得t=,故直线AB的方程为x=,圆心O到直线AB的距离d=,此时直线AB与圆x2+y2=2相切.当x0t时,直线AB的方程为y-2=(x-t),即(y0-2)x-(x0-t)y+2x

2、0-ty0=0.圆心O到直线AB的距离d=.又+2=4,t=-,故d=.此时直线AB与圆x2+y2=2相切.导学号324708842.(2015沈阳一模)已知椭圆C:=1(ab0),其中e=,焦距为2,过点M(4,0)的直线l与椭圆C交于点A,B,点B在AM之间.又点A,B的中点横坐标为,且=.(1)求椭圆C的标准方程;(2)求实数的值.解:(1)由条件可知,c=1,a=2,故b2=a2-c2=3,椭圆的标准方程是=1.(2)由=,可知A,B,M三点共线,设点A(x1,y1),点B(x2,y2).若直线ABx轴,则x1=x2=4,不合题意.当AB所在直线l的斜率k存在时,设直线l的方程为y=k

3、(x-4).由消去y,得(3+4k2)x2-32k2x+64k2-12=0.由的判别式=322k4-4(4k2+3)(64k2-12)=144(1-4k2)0,解得k2.又由,可得k2=,即有k=.将k2=代入方程,得7x2-8x-8=0,则x1=,x2=.又因为=(4-x1,-y1),=(x2-4,y2),=,所以=,所以=.导学号324708853.已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|=()+2.(1)求曲线C的方程;(2)点Q(x0,y0)(-2x02=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=2,2c=2.动点P的轨迹C1的方

4、程为=1.(2)设N(t,t2),则PQ的方程为:y-t2=2t(x-t)y=2tx-t2,联立方程组消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有而|PQ|=|x1-x2|=,点M到PQ的高为h=,由SMPQ=|PQ|h代入化简得:SMPQ=;当且仅当t2=10时,SMPQ可取最大值.导学号324708875.(2015石家庄高三质检一)定长为3的线段AB的两个端点A,B分别在x轴、y轴上滑动,动点P满足=2.(1)求点P的轨迹曲线C的方程;(2)若过点(1,0)的直线与曲线C交于M,N两点,求的最大值.解:(1)设A(x0,0),B(0,y0),P(x,y),由=2得

5、(x,y-y0)=2(x0-x,-y),即又因为=9,所以+(3y)2=9.化简得+y2=1,故点P的轨迹方程为+y2=1.(2)当过点(1,0)的直线为y=0时,=(2,0)(-2,0)=-4.当过点(1,0)的直线不为y=0时,可设直线方程为x=ty+1,A(x1,y1),B(x2,y2).联立化简得(t2+4)y2+2ty-3=0,则=4t2+12(t2+4)=16t2+480恒成立,由韦达定理得y1+y2=-,y1y2=-.所以=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2=(t2+1)y1y2+t(y1+y2)+1=(t2+1)+t+1=-4+.当t=0时,()max=

6、.综上所述,的最大值为.导学号324708886.已知动点C是椭圆:+y2=1(a1)上的任意一点,AB是圆G:x2+(y-2)2=的一条直径(A,B是端点),的最大值是.(1)求椭圆的方程;(2)已知椭圆的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆于P,Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.解:(1)设点C的坐标为(x,y),则+y2=1.连接CG,由,又G(0,2),可得=x2+(y-2)2-=a(1-y2)+(y-2)2-=-(a-1)y2-4y+a+,其中y-1,

7、1.因为a1,故当y=-1,即1-1,即a3时,的最大值是,由条件得,即a2-7a+10=0,解得a=5(a=2舍去).综上所述,椭圆的方程是+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足=1,=1,两式相减,整理得=-=-,从而直线PQ的方程为y-y0=-(x-x0),又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-(2-x0),因为直线l与x轴不垂直,故2x0-=50,从而0x02.假设在线段OF2上存在点M(m,0)(0mb0)的右焦点F(1,0),过点F且与坐标轴不垂直的直线与椭圆交于P,Q两点,当直线PQ经过椭

8、圆的一个顶点时其倾斜角恰好为60.(1)求椭圆C的方程;(2)设O为坐标原点,线段OF上是否存在点T(t,0),使得?若存在,求出实数t的取值范围;若不存在,说明理由.解:(1)由题意知c=1,又=tan 60=,所以b2=3,a2=b2+c2=4,所以椭圆的方程为=1.(2)设直线PQ的方程为y=k(x-1)(k0),代入=1,得(3+4k2)x2-8k2x+4k2-12=0,设P(x1,y1),Q(x2,y2),线段PQ的中点为R(x0,y0),则x0=,y0=k(x0-1)=-,由()=(2)=0,所以直线TR为直线PQ的垂直平分线,直线TR的方程为y+=-,令y=0得T点的横坐标t=.

9、因为k2(0,+),所以+4(4,+),所以t.所以线段OF上存在点T(t,0),使得,其中t.导学号324708908.(2015江西三校联考)已知抛物线E:y2=2px(p0)的准线与x轴交于点K,过点K作圆C:(x-2)2+y2=1的两条切线,切点为M,N,|MN|=.(1)求抛物线E的方程;(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且(其中O为坐标原点).求证:直线AB必过定点,并求出该定点Q的坐标;过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.解:(1)由已知得K,C(2,0).设MN与x轴交于点R,由圆的对称性可知,|MR|=.于是|CR|=,所以|CK|=3,即2+=3,p=2.故抛物线E的方程为y2=4x.(2)证明:设直线AB的方程为x=my+t,A,B.联立得y2-4my-4t=0,则y1+y2=4m,y1y2=-4t.由+y1y2=,故y1y2=-18(y1y2=2舍去),即-4t=-18,即t=,所以直线AB过定点Q.由得|AB|=|y2-y1|=,同理得|GD|=|y2-y1|=.则四边形AGBD的面积S=|AB|GD|=4.令m2+=(2),则S=4是关于的增函数,故Smin=88,当且仅当m=1时取到最小值88.导学号324708914

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服