1、2022年广东省中考数学试卷一、选择题本大题共10小题,每题3分,共30分13分5的相反数是AB5CD523分“一带一路建议提出三年以来,广东企业到“一带一路国家投资越来越活泼,据商务部门发布的数据显示,2022年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为33分A=70,那么A的补角为A110B70C30D2043分如果2是方程x23x+k=0的一个根,那么常数k的值为A1B2C1D253分在学校举行“阳光少年,励志青春的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,那么这组数据的众数是A95B90C85D80
2、63分以下所述图形中,既是轴对称图形又是中心对称图形的是A等边三角形B平行四边形C正五边形D圆73分如图,在同一平面直角坐标系中,直线y=k1xk10与双曲线y=k20相交于A,B两点,点A的坐标为1,2,那么点B的坐标为A1,2B2,1C1,1D2,283分以下运算正确的选项是Aa+2a=3a2Ba3a2=a5Ca42=a6Da4+a2=a493分如图,四边形ABCD内接于O,DA=DC,CBE=50,那么DAC的大小为A130B100C65D50103分如图,正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,以下结论:SABF=SADF;SCDF=4SCEF;SADF=2
3、SCEF;SADF=2SCDF,其中正确的选项是ABCD二、填空题本大题共6小题,每题4分,共24分114分分解因式:a2+a=124分一个n边形的内角和是720,那么n=134分实数a,b在数轴上的对应点的位置如下列图,那么a+b0填“,“或“=144分在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是154分4a+3b=1,那么整式8a+6b3的值为164分如图,矩形纸片ABCD中,AB=5,BC=3,先按图2操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图3操作,沿过点F
4、的直线折叠,使点C落在EF上的点H处,折痕为FG,那么A、H两点间的距离为三、解答题本大题共3小题,每题6分,共18分176分计算:|7|10+1186分先化简,再求值:+x24,其中x=196分学校团委组织志愿者到图书馆整理一批新进的图书假设男生每人整理30本,女生每人整理20本,共能整理680本;假设男生每人整理50本,女生每人整理40本,共能整理1240本求男生、女生志愿者各有多少人四、解答题本大题共3小题,每题7分,共21分207分如图,在ABC中,AB1作边AB的垂直平分线DE,与AB,BC分别相交于点D,E用尺规作图,保存作图痕迹,不要求写作法;2在1的条件下,连接AE,假设B=5
5、0,求AEC的度数217分如下列图,四边形ABCD,ADEF都是菱形,BAD=FAD,BAD为锐角1求证:ADBF;2假设BF=BC,求ADC的度数227分某校为了解九年级学生的体重情况,随机抽取了九年级局部学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息答复以下问题:体重频数分布表组边体重千克人数A45x5012B50x55mC55x6080D60x6540E65x70161填空:m=直接写出结果;在扇形统计图中,C组所在扇形的圆心角的度数等于度;2如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人五、解答题本大题共3小题,每
6、题9分,共27分239分如图,在平面直角坐标系中,抛物线y=x2+ax+b交x轴于A1,0,B3,0两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C1求抛物线y=x2+ax+b的解析式;2当点P是线段BC的中点时,求点P的坐标;3在2的条件下,求sinOCB的值249分如图,AB是O的直径,AB=4,点E为线段OB上一点不与O,B重合,作CEOB,交O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AFPC于点F,连接CB1求证:CB是ECP的平分线;2求证:CF=CE;3当=时,求劣弧的长度结果保存259分如图,在平面直角坐标系中,O为原点,四边形ABCO是
7、矩形,点A,C的坐标分别是A0,2和C2,0,点D是对角线AC上一动点不与A,C重合,连结BD,作DEDB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF1填空:点B的坐标为;2是否存在这样的点D,使得DEC是等腰三角形假设存在,请求出AD的长度;假设不存在,请说明理由;3求证:=;设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式可利用的结论,并求出y的最小值2022年广东省中考数学试卷参考答案与试题解析一、选择题本大题共10小题,每题3分,共30分13分2022广东5的相反数是AB5CD5【分析】根据相反数的概念解答即可【解答】解:根据相反数的定义有:5的相反数是5应选:D【点
8、评】此题考查了相反数的意义,一个数的相反数就是在这个数前面添上“号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是023分2022广东“一带一路建议提出三年以来,广东企业到“一带一路国家投资越来越活泼,据商务部门发布的数据显示,2022年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【解答】解:4000000
9、000=4109应选:C【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值33分2022广东A=70,那么A的补角为A110B70C30D20【分析】由A的度数求出其补角即可【解答】解:A=70,A的补角为110,应选A【点评】此题考查了余角与补角,熟练掌握补角的性质是解此题的关键43分2022广东如果2是方程x23x+k=0的一个根,那么常数k的值为A1B2C1D2【分析】把x=2代入方程列出关于k的新方程,通过解方程来求k的值【解答】解:2是一元二次方程x23x+k=0的一个根,2232+k=0,解得,
10、k=2应选:B【点评】此题考查的是一元二次方程的根即方程的解的定义一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立53分2022广东在学校举行“阳光少年,励志青春的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,那么这组数据的众数是A95B90C85D80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90应选B【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个63分2022广东以下所述图形中
11、,既是轴对称图形又是中心对称图形的是A等边三角形B平行四边形C正五边形D圆【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形应选D【点评】此题考查了中心对称图形:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心也考查了轴对称图形73分2022广东如图,在同一平面直角坐标系中,直线y=k1xk10与双曲线y=k20相交于A,B两点,点A的坐标为1,2,那么点B的坐标为A1,2B2,1C1,1D2,2【分析
12、】反比例函数的图象是中心对称图形,那么它与经过原点的直线的两个交点一定关于原点对称【解答】解:点A与B关于原点对称,B点的坐标为1,2应选:A【点评】此题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握83分2022广东以下运算正确的选项是Aa+2a=3a2Ba3a2=a5Ca42=a6Da4+a2=a4【分析】根据整式的加法和幂的运算法那么逐一判断即可【解答】解:A、a+2a=3a,此选项错误;B、a3a2=a5,此选项正确;C、a42=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;应选:B【点评】此题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘
13、、幂的乘方法那么是解题的关键93分2022广东如图,四边形ABCD内接于O,DA=DC,CBE=50,那么DAC的大小为A130B100C65D50【分析】先根据补角的性质求出ABC的度数,再由圆内接四边形的性质求出ADC的度数,由等腰三角形的性质求得DAC的度数【解答】解:CBE=50,ABC=180CBE=18050=130,四边形ABCD为O的内接四边形,D=180ABC=180130=50,DA=DC,DAC=65,应选C【点评】此题考查的是圆内接四边形的性质及等腰三角形的性质,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半103分2022广东如图,正方形
14、ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,以下结论:SABF=SADF;SCDF=4SCEF;SADF=2SCEF;SADF=2SCDF,其中正确的选项是ABCD【分析】由AFDAFB,即可推出SABF=SADF,故正确,由BE=EC=BC=AD,ADEC,推出=,可得SCDF=2SCEF,SADF=4SCEF,SADF=2SCDF,故错误正确,由此即可判断【解答】解:四边形ABCD是正方形,ADCB,AD=BC=AB,FAD=FAB,在AFD和AFB中,AFDAFB,SABF=SADF,故正确,BE=EC=BC=AD,ADEC,=,SCDF=2SCEF,SADF=4SCE
15、F,SADF=2SCDF,故错误正确,应选C【点评】此题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型二、填空题本大题共6小题,每题4分,共24分114分2022广东分解因式:a2+a=aa+1【分析】直接提取公因式分解因式得出即可【解答】解:a2+a=aa+1故答案为:aa+1【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键124分2022广东一个n边形的内角和是720,那么n=6【分析】多边形的内角和可以表示成n2180,依此列方程可求解【解答】解:依题意有:n2180=720,解得n=6故
16、答案为:6【点评】此题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理134分2022广东实数a,b在数轴上的对应点的位置如下列图,那么a+b0填“,“或“=【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值来解答即可【解答】解:a在原点左边,b在原点右边,a0b,a离开原点的距离比b离开原点的距离小,|a|b|,a+b0故答案为:【点评】此题考查了实数与数轴,有理数的加法法那么,根据数轴得出a、b的符号和二者绝对值的大小关系是解题的关键144分2022广东在一个不透明的
17、盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解【解答】解:5个小球中,标号为偶数的有2、4这2个,摸出的小球标号为偶数的概率是,故答案为:【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比154分2022广东4a+3b=1,那么整式8a+6b3的值为1【分析】先求出8a+6b的值,然后整体代入进行计算即可得解【解答】解:4a+3b=1,8a+6b=2,8a+6b3=23=1;故答案为:1【点评】此题考查了代数式求值,整体思想的利用是解题的关键164
18、分2022广东如图,矩形纸片ABCD中,AB=5,BC=3,先按图2操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图3操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,那么A、H两点间的距离为【分析】如图3中,连接AH由题意可知在RtAEH中,AE=AD=3,EH=EFHF=32=1,根据AH=,计算即可【解答】解:如图3中,连接AH由题意可知在RtAEH中,AE=AD=3,EH=EFHF=32=1,AH=,故答案为【点评】此题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型三、解答题本大题
19、共3小题,每题6分,共18分176分2022广东计算:|7|10+1【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案【解答】解:原式=71+3=9【点评】此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握零指数幂、负整数指数幂的性质、绝对值等考点的运算186分2022广东先化简,再求值:+x24,其中x=【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得【解答】解:原式=+x+2x2=x+2x2=2x,当x=时,原式=2【点评】此题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法那么是解题
20、的关键196分2022广东学校团委组织志愿者到图书馆整理一批新进的图书假设男生每人整理30本,女生每人整理20本,共能整理680本;假设男生每人整理50本,女生每人整理40本,共能整理1240本求男生、女生志愿者各有多少人【分析】设男生志愿者有x人,女生志愿者有y人,根据“假设男生每人整理30本,女生每人整理20本,共能整理680本;假设男生每人整理50本,女生每人整理40本,共能整理1240本,即可得出关于x、y的二元一次方程组,解之即可得出结论【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:答:男生志愿者有12人,女生志愿者有16人【点评】此题考查了二元一次方程组的应
21、用,找准等量关系,列出二元一次方程组是解题的关键四、解答题本大题共3小题,每题7分,共21分207分2022广东如图,在ABC中,AB1作边AB的垂直平分线DE,与AB,BC分别相交于点D,E用尺规作图,保存作图痕迹,不要求写作法;2在1的条件下,连接AE,假设B=50,求AEC的度数【分析】1根据题意作出图形即可;2由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到EAB=B=50,由三角形的外角的性质即可得到结论【解答】解:1如下列图;2DE是AB的垂直平分线,AE=BE,EAB=B=50,AEC=EAB+B=100【点评】此题考查了作图根本作图,线段垂直平分线的性质,三
22、角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键217分2022广东如下列图,四边形ABCD,ADEF都是菱形,BAD=FAD,BAD为锐角1求证:ADBF;2假设BF=BC,求ADC的度数【分析】1连结DB、DF根据菱形四边相等得出AB=AD=FA,再利用SAS证明BADFAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明ADBF;2设ADBF于H,作DGBC于G,证明DG=CD在直角CDG中得出C=30,再根据平行线的性质即可求出ADC=180C=150【解答】1证明:如图,连结DB、DF四边形ABCD,A
23、DEF都是菱形,AB=BC=CD=DA,AD=DE=EF=FA在BAD与FAD中,BADFAD,DB=DF,D在线段BF的垂直平分线上,AB=AF,A在线段BF的垂直平分线上,AD是线段BF的垂直平分线,ADBF;2如图,设ADBF于H,作DGBC于G,那么四边形BGDH是矩形,DG=BH=BFBF=BC,BC=CD,DG=CD在直角CDG中,CGD=90,DG=CD,C=30,BCAD,ADC=180C=150【点评】此题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定,平行线的性质等知识,证明出AD是线段BF的垂直平分线是解题的关键227分2022广东某校为了解九年级学生的体
24、重情况,随机抽取了九年级局部学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息答复以下问题:体重频数分布表组边体重千克人数A45x5012B50x55mC55x6080D60x6540E65x70161填空:m=52直接写出结果;在扇形统计图中,C组所在扇形的圆心角的度数等于144度;2如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人【分析】1根据D组的人数及百分比进行计算即可得到m的值;根据C组的百分比即可得到所在扇形的圆心角的度数;2根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数
25、量【解答】解:1调查的人数为:4020%=200人,m=20012804016=52;C组所在扇形的圆心角的度数为360=144;故答案为:52,144;2九年级体重低于60千克的学生大约有1000=720人【点评】此题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各局部数量和总数量之间的关系各局部扇形圆心角的度数=局部占总体的百分比360五、解答题本大题共3小题,每题9分,共27分239分2022广东如图,在平面直角坐标系中,抛物线y=x2+ax+b交x轴于A1,0,B3,0两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C1求抛物线y=x2
26、+ax+b的解析式;2当点P是线段BC的中点时,求点P的坐标;3在2的条件下,求sinOCB的值【分析】1将点A、B代入抛物线y=x2+ax+b,解得a,b可得解析式;2由C点横坐标为0可得P点横坐标,将P点横坐标代入1中抛物线解析式,易得P点坐标;3由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sinOCB=可得结果【解答】解:1将点A、B代入抛物线y=x2+ax+b可得,解得,a=4,b=3,抛物线的解析式为:y=x2+4x3;2点C在y轴上,所以C点横坐标x=0,点P是线段BC的中点,点P横坐标xP=,点P在抛物线y=x2+4x3上,yP=3=,点P的坐标为,;3
27、点P的坐标为,点P是线段BC的中点,点C的纵坐标为20=,点C的坐标为0,BC=,sinOCB=【点评】此题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键249分2022广东如图,AB是O的直径,AB=4,点E为线段OB上一点不与O,B重合,作CEOB,交O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AFPC于点F,连接CB1求证:CB是ECP的平分线;2求证:CF=CE;3当=时,求劣弧的长度结果保存【分析】1根据等角的余角相等证明即可;2欲证明CF=CE,只要证明ACFACE即可;3作BMPF于M那么CE=CM=CF,设CE
28、=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tanBCM的值即可解决问题;【解答】1证明:OC=OB,OCB=OBC,PF是O的切线,CEAB,OCP=CEB=90,PCB+OCB=90,BCE+OBC=90,BCE=BCP,BC平分PCE2证明:连接ACAB是直径,ACB=90,BCP+ACF=90,ACE+BCE=90,BCP=BCE,ACF=ACE,F=AEC=90,AC=AC,ACFACE,CF=CE3解:作BMPF于M那么CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,BMCPMB,=,BM2=CMPM=3a2,BM=a,tanBCM
29、=,BCM=30,OCB=OBC=BOC=60,的长=【点评】此题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型259分2022广东如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A0,2和C2,0,点D是对角线AC上一动点不与A,C重合,连结BD,作DEDB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF1填空:点B的坐标为2,2;2是否存在这样的点D,使得DEC是等腰三角形假设存在,请求出AD的长度;假设不存在,请说明理
30、由;3求证:=;设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式可利用的结论,并求出y的最小值【分析】1求出AB、BC的长即可解决问题;2存在连接BE,取BE的中点K,连接DK、KC首先证明B、D、E、C四点共圆,可得DBC=DCE,EDC=EBC,由tanACO=,推出ACO=30,ACD=60由DEC是等腰三角形,观察图象可知,只有ED=EC,推出DBC=DCE=EDC=EBC=30,推出DBC=BCD=60,可得DBC是等边三角形,推出DC=BC=2,由此即可解决问题;3由2可知,B、D、E、C四点共圆,推出DBC=DCE=30,由此即可解决问题;作DHAB于H想方法用x表示B
31、D、DE的长,构建二次函数即可解决问题;【解答】解:1四边形AOCB是矩形,BC=OA=2,OC=AB=2,BCO=BAO=90,B2,2故答案为2,22存在理由如下:连接BE,取BE的中点K,连接DK、KCBDE=BCE=90,KD=KB=KE=KC,B、D、E、C四点共圆,DBE=DCE,EDC=EBC,tanACO=,ACO=30,ACB=60如图1中,当E在线段CO上时,DEC是等腰三角形,观察图象可知,只有ED=EC,DBE=DCE=EDC=EBC=30,DBC=BCD=60,DBC是等边三角形,DC=BC=2,在RtAOC中,ACO=30,OA=2,AC=2AO=4,AD=ACCD
32、=42=2当AD=2时,DEC是等腰三角形如图2中,当E在OC的延长线上时,DCE是等腰三角形,只有CD=CE,DBC=DEC=CDE=15,ABD=ADB=75,AB=AD=2,综上所述,满足条件的AD的值为2或23由2可知,B、D、E、C四点共圆,DBE=DCO=30,tanDBE=,=如图2中,作DHAB于H在RtADH中,AD=x,DAH=ACO=30,DH=AD=x,AH=x,BH=2x,在RtBDH中,BD=,DE=BD=,矩形BDEF的面积为y=2=x26x+12,即y=x22x+4,y=x32+,0,x=3时,y有最小值【点评】此题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,证明B、D、E、C四点共圆,学会构建二次函数解决问题,属于中考压轴题
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100