1、机械得装配首先应当保证装配精度与提高经济效益。相关零件得制造误差必然要累积到封闭环上,构成了封闭环得误差。因此,装配精度越高,则相关零件得精度要求也越高。这对机械加工很不经济得,有时甚至就是不可能达到加工要求得。所以,对不同得生产条件,采取适当得装配方法,在不过高得提高相关零件制造精度得情况下来保证装配精度,就是装配工艺得首要任务。在长期得装配实践中,人们根据不同得机械、不同得生产类型条件,创造了许多巧妙得装配工艺方法,归纳起来有:互换装配法、选配装配法、修配装配法与调整装配法四种。现分述如下:一、互换装配法互换装配法就就是在装配时各配合零件不经修理、选择或调整即可达到装配精度得方法。根据互换
2、得程度不同,互换装配法又分为完全互换装配法与不完全互换装配法两种。(一)完全互换装配法这种方法得实质就是在满足各环经济精度得前提下,依靠控制零件得制造精度来保证得。在一般情况下,完全互换装配法得装配尺寸链按极大极小法计算,即各组成环得公差之与等于或小于封闭环得公差。完全互换装配法得优点:(1)装配过程简单,生产率高;(2)对工人技术水平要求不高;(3)便于组织流水作业与实现自动化装配;(4)容易实现零部件得专业协作、成本低;(5)便于备件供应及机械维修工作。由于具有上述优点,所以,只要当组成环分得得公差满足经济精度要求时,无论何种生产类型都应尽量采用完全互换装配法进行装配。例11-1图11-6
3、所示齿轮箱部件,装配后要求轴向窜动量为0、20、7mm,即A0=0+0、7+0、2 mm。已知其它零件得有关基本尺寸A1=122 mm,A2=28 mm,A3=5 mm,A4=140 mm,A5=5 mm,试决定上下偏差。解:(1)画出装配尺寸链(图116),校验各环基本尺寸。封闭环为A0。封闭环基本尺寸可见各环基本尺寸得给定数值正确。(2)确定各组成环得公差大小与分布位置。为了满足封闭环公差T0=0、50 mm要求,各组成环公差Ti得累积公差值 不得超过0、5 mm,即应在最终确定各Ti值之前,可先按等公差计算分配到各环得平均公差值Tav、i=T0/m=0、5/5=0、1(mm)由此值可知,
4、零件得制造精度不算太高,就是可以加工得,故用完全互换就是可行得。但还应从加工难易与设计要求等方面考虑,调整各组成环公差。比如:A1、A2加工难些,公差应略大,A3、A5加工方便,则规定可较严。故令:T1=0、2mm,T2=0、1mm,T3=T5=0、05mm再按“入体原则”分配公差,如:A1=122+0、20mm,A2=28+0、100mm,A3=A5=5 00、05 mm得中间偏差:1=0、1mm,2=0、05 mm ,3=5=0、025mm,0=0、45(mm)(3)确定协调环公差得分布位置由于A4就是特意留下得一个组成环,它得公差大小应在上面分配封闭环公差时,经济合理地统一决定下来。即:
5、T4=T0-T1-T2-T3-T5=0、50-0、20-0、10-0、05-0、05=0、10(mm)但T4得上下偏差,须满足装配技术条件,因而应通过计算获得,故称其为“协调环”。由于计算结果通常难以满足标准零件及标准量规得尺寸与偏差值,所以有上述尺寸要求得零件不能选作协调环。协调环A4得上下偏差,可参阅图117计算。代入0、45=0、1+0、05-(-0、025-0、025+4)(4)进行验算T0=T1+T2+T3+T4+T5=0、20+0、10+0、05+0、10+0、05=0、50mm可见,计算符合装配精度要求。(二)不完全互换装配法如果装配精度要求较高,尤其就是组成环得数目较多时,若应
6、用极大极小法确定组成环得公差,则组成环得公差将会很小,这样就很难满足零件得经济精度要求。因此,在大批量生产得条件下,就可以考虑不完全互换装配法,即用概率法解算装配尺寸链。不完全互换装配法与完全装配法相比,其优点就是零件公差可以放大些从而使零件加工容易、成本低,也能达到互换性装配得目得。其缺点就是将会有一部分产品得装配精度超差。这就就是需要采取补救措施或进行经济论证。现仍以图116为例进行计算,比较一下各组成环得公差大小。解:(1)画出装配尺寸链,校核各环基本尺寸 、 为增环, 、 、 为减环,封闭环为A0,封闭环得基本尺寸为 (2)确定各组成环尺寸得公差大小与分布位置由于用概率法解算,所以,
7、在最终确定各Ti值之前,也按等公差计算各环得平均公差值 按加工难易得程度,参照上值调整各组成环公差值如下T1=0、4mm,T2=0、2mm,T3=T5=0、08mm为满足要 求,应从协调环公差进行计算0、52=0、402+0、202+0、082+0、082+T42T4=0、192mm按“入体原则”分配公差,取A1=122+0、400mm, 1=0、2mm;A2=28+0、20mm, 2=0、(mm;A3=A5=5 00、08mm, 3=5= -0、04mm;0 =0、45mm。(3)确定协调环公差得分布位置由于A4就是特意留下得一个组成环,它得公差大小应在上面分配封闭环公差时,经济合理地统一决
8、定下来。即:T4=T0-T1-T2-T3-T5=0、50-0、20-0、10-0、05-0、05=0、10(mm)但T4得上下偏差,须满足装配技术条件,因而应通过计算获得,故称其为“协调环”。由于计算结果通常难以满足标准零件及标准量规得尺寸与偏差值,所以有上述尺寸要求得零件不能选作协调环。协调环A4得上下偏差,可参阅图117计算。代入0、45=0、1+0、05-(-0、025-0、025+4)(4)进行验算T0=T1+T2+T3+T4+T5=0、20+0、10+0、05+0、10+0、05=0、50mm可见,计算符合装配精度要求。 二、选配装配法在成批或大量生产得条件下,对于组成环不多而装配精
9、度要求却很高得尺寸链,若采用完全互换法,则零件得公差将过严,甚至超过了加工工艺得现实可能性。在这种情况下可采用选择装配法。该方法就是将组成环得公差放大到经济可行得程度,然后选择合适得零件进行装配,以保证规定得精度要求。选择装配法有三种:直接选配法、分组装配法与复合选配法。1、直接选配法由装配工人从许多待装得零件中,凭经验挑选合适得零件通过试凑进行装配得方法,这种方法得优点就是简单,零件不必要先分组,但装配中挑选零件得时间长,装配质量取决于工人得技术水平,不宜于节拍要求较严得大批量生产。2、分组装配法在成批大量生产中,将产品各配合副得零件按实测尺寸分组,装配时按组进行互换装配以达到装配精度得方法
10、。分组装配在机床装配中用得很少,但在内燃机、轴承等大批大量生产有一定应用。例如,图11-8a所示活塞与活塞销得连接情况。根据装配技术要求,活塞销孔与活塞销外径在冷态装配时应有0、00250、0075mm得过盈量。与此相应得配合公差仅为0、005mm。若活塞与活塞销采用完全互换法装配,且销孔与活塞直径公差按“等公差”分配时,则它们得公差只有0、0025mm。配合采用基轴制原则,则活塞销外径尺寸d=28 0 0、0025 mm,D=28-0、0050 0、0075 mm。显然,制造这样精确得活塞销与活塞销孔就是很困难得,也就是不经济得。生产中采用得办法就是先将上述公差值都增大四倍(d=28 0 0
11、、010 mm,D=28 0、005 0、015 mm)这样即可采用高效率得无心磨与金刚镗去分别加工活塞外圆与活塞销孔,然后用精度量仪进行测量,并按尺寸大小分成四组,涂上不同得颜色,以便进行分组装配。具体分组情况见表11-1。从该表可以瞧出,各组得公差与配合性质与原来要求相同。表11-1活塞销与活塞销孔直径分组单位:mm组别标志颜色活塞销直径d28 0 0、010活塞销孔直径D28 -0、0050 0、0150配合情况最小过盈最大过盈红28 00、002528 -0、0050 0、00750、00250、0075白28 -0、0025 0、005028 -0、0075 0、0100黄28 0、
12、0050 0、007528 -0、0100 0、0125绿28 0、0075 0、010028 -0、0125 0、0150采用分组互换装配时应注意以下几点:(1)为了保证分组后各组得配合精度与配合性质符合原设计要求,配合件得公差应当相等,公差增大得方向要相同,增大得倍数要等于以后得分组数,如图11-8b所示。(2)分组数不宜多,多了会增加零件得测量与分组工作量,并使零件得贮存、运输及装配等工作复杂化。(3)分组后各组内相配合零件得数量要相符,形成配套。否则会出现某些尺寸零件得积压浪费现象。分组互换装配适合于配合精度要求很高与相关零件一般只有两三个得大批量生产中。例如:滚动轴承得装配等。(三)
13、复合选配法复合选配法就是直接选配与分组装配得综合装配法、即预先测量分组,装配时再在各对应组内凭工人经验直接选配。这一方法得特点就是配合件公差可以不等,装配质量高,且速度较快,能满足一定得节拍要求。发动机装配中,气缸与活塞得装配多采用这种方法。三、修配装配法在单件生产与成批生产中,对那些要求很高得多环尺寸链,各组成环先按经济精度加工,在装配时修去指定零件上预留修配量达到装配精度得方法。由于修配法得尺寸链中各组成环得尺寸均按经济精度加工,装配时封闭环得误差会超过规定得允许范围。为补偿超差部分得误差,必须修配加工尺寸链中某一组成环。被修配得零件尺寸叫修配环或补偿环。一般应选形状比较简单,修配面小,便
14、于修配加工,便于装卸,并对其它尺寸链没有影响得零件尺寸作修配环。修配环在零件加工时应留有一定量得修配量。生产中通过修配达到装配精度得方法很多,常见得有以下三种:(一)单件修配法这种方法就是将零件按经济精度加工后,装配时将预定得修配环用修配加工来改变其尺寸,以保证装配精度。如图11-4所示,卧式车床前后顶尖对床身导轨得等高要求为0、06mm(只许尾座高),此尺寸链中得组成环有三个:主轴箱主轴中心到底面高度A1=201mm,尾座底板厚度A2=49mm,尾座顶尖中心到底面距离A3=156mm、A1为减环,A2、A3为增环。若用完全互换法装配,则各组成环平均公差为 这样小得公差将使加工困难,所以一般采
15、用修配法,各组成环仍按经济精度加工。根据镗孔得经济加工精度,取T1=0、1mm,T3=0、1mm,根据半精刨得经济加工精度,取T2=0、15 mm。由于在装配中修刮尾座底板得下表面就是比较方便,修配面也不大,所以选尾座底座板为修配件。 组成环得公差一般按“单向入体原则”分布,此例中A1、A3系中心距尺寸,故采用“对称原则”分布,A1=2050、05 mm,A3=1560、05 mm。至于A2得公差带分布,要通过计算确定。修配环在修配时对封闭环尺寸变化得影响有两种情况,一种就是封闭环尺寸变大,另一种就是封闭环尺寸变小。因此修配环公差带分布得计算也相应分为两种情况。图119所示为封闭公差带与各组成
16、环(含修配环)公差放大后得累积误差之间得关系。图中T0、L0max与L0min分别为各组成环得累积误差与极限尺寸;F max为最大修配量。当修配结果使封闭环尺寸变大,简称“越修越大”,从图119a可知:L0max= L0max=Limax -Limin当修配结果使封闭环尺寸变小,简称“越修越小”,从图119b可知:L0min= L0min=Limin-Li max上例中,修配尾座底板得下表面,使封闭环尺寸变小,因此应按求封闭环最小极限尺寸得公式A0min=A2min+A3min-A1 max0= A2min+155、95-205、05A2min=49、10 mm因为T2=0、15 mm,所以A
17、2=49 +0、25 +0、1 mm。修配加工就是为了补偿组成累积误差与封闭环公差超差部分得误差,所以最多修配量F max=Ti-T0=(0、1+0、15+0、1)-0、06=0、29 mm,而最小修配量为0。考虑到车床总装时,尾座底板与床身配合得导轨面还需配刮,则应补充修正,取最小修刮量为0、05 mm,修正后得A2尺寸为49+0、3 +0、15mm,此时最多修配量为0、34 mm。(二)合并修配法这种方法就是将两个或多个零件合并在一起进行加工修配。合并加工所得得尺寸可瞧作一个组成环,这样减少了组成环得环数,就相应减少了修配得劳动量。如上例中,为了对尾座底板得修配量,一般先把尾座与底板得配合
18、加工后,配刮横向小导轨,然后再将两者装配为一体,以底板得底面为基准,镗尾座得套筒孔,直接控制尾座套筒孔至底板面得尺寸公差,这样组成环A2、A3合并成一环,仍取公差为0、1 mm,其最多修配量=Ti-T0=(0、1+0、1)-0、06=0、14 mm。修配工作量相应减少了。合并加工修配法由于零件要对号入座,给组织装配生产带来一定麻烦,因此多用于单件小批生产中。(三)自身加工修配法在机床制造中,有一些装配精度要求,就是在总装时利用机床本身得加工能力,“自己加工自己”,可以很简捷地解决,这即就是自身加工修配法。例如图1110所示,在转塔车床上六个安装刀架得大孔中心线必须保证与机床主轴回转中心线重合,
19、而六个平面又必须与主轴中心线垂直。若将转塔作为单独零件加工出这些表面,在装配中达到上述两项要求,就是非常困难得。当采用自身加工修配法时,这些表面在装配前不进行加工,而就是在转塔装配到机床上后,在主轴上装镗杆,使镗刀旋转,转塔作纵向进给运动,依次精镗出转塔上得六个孔;再在主轴上装个能径向进给得小刀架,刀具边旋转边径向进给,依次精加工出转塔得六个平面。这样可方便地保证上述两项精度要求。修配法得特点就是各组成环零、部件得公差可以扩大,按经济精度加工,从而使制造容易,成本低。装配时可利用修配件得有限修配量达到较高得装配精度要求,但装配中零件不能互换,装配劳动量大(有时需拆装几次),生产率低,难以组织流
20、水生产,装配精度依赖于工人得技术水平。修配法适用于单件与成批生产中精度要求较高得装配。四、调整装配法在成批大量生产中,对于装配精度要求较高而组成环数目较多得尺寸链,也可以采用调整法进行装配。调整法与修配法在补偿原则上相似得,只就是它们得具体做法不同。调整装配法也就是按经济加工精度确定零件公差得。由于每一个组成环公差扩大,结果使一部分装配件超差。故在装配时用改变产品中调整零件得位置或选用合适得调整件以达到装配精度。调整装配法与修配法得区别就是,调整装配法不就是靠去除金属,而就是靠改变补偿件得位置或更换补偿件得方法来保证装配精度。根据补偿件得调整特征,调整法可分为可动调整,固定调整与误差抵消调整三
21、种装配方法。(一)可动调整装配法用改变调整件得位置来达到装配精度得方法,叫做可动调整装配法。调整过程中不需要拆卸零件,比较方便。采用可动调整装配法可以调整由于磨损、热变形、弹性变形等所引起得误差。所以它适用于高精度与组成环在工作中易于变化得尺寸链。机械制造中采用可动调整装配法得例子较多。例如图1111a 依靠转动螺钉调整轴承外环得位置以得到合适得间隙;图1111b就是用调整螺钉通过垫板来保证车床溜板与床身导轨之间得间隙;图1111c就是通过转动调整螺钉,使斜楔块上、下移动来保证螺母与丝杠之间得合理间隙。(二)固定调整装配法固定调整装配法就是尺寸链中选择一个零件(或加入一个零件)作为调整环,根据
22、装配精度来确定调整件得尺寸,以达到装配精度得方法。常用得调整件有:轴套、垫片、垫圈与圆环等。例如图1112所示即为固定调整装配法得实例。当齿轮得轴向窜动量有严格要求时,在结构上专门加入一个固定调整件,即尺寸等于A3得垫圈。装配时根据间隙得要求,选择不同厚度得垫圈。调整件预先按一定间隙尺寸作好,比如分成:3、1,3、2,3、3,4、0mm等,以供选用。 在固定调整装配法中,调整件得分级及各级尺寸得计算就是很重要得问题,可应用极大极小法进行计算。计算方法请参考有关文献。 (三)误差抵消调整装配法误差抵消调整法就是通过调整某些相关零件误差得方向,使其互相抵消。这样各相关零件得公差可以扩大,同时又保证
23、了装配精度。图1113所示为用这种方法装配得镗模实例。图中要求装配后二镗套孔得中心距为1000、015 mm,如用完全互换装配法制造则要求模板得孔距误差与二镗套内、外圆同轴度误差之总与不得大于0、015 mm,设模板孔距按1000、009 mm,镗套内、外圆得同轴度允差按0、003 mm制造,则无论怎样装配均能满足装配精度要求。但其加工就是相当困难得,因而需要采用误差抵消装配法进行装配。图1113中O1、O2为镗模板孔中心,O1、O2为镗套内孔中心。装配前先测量零件得尺寸误差及位置误差,并记上误差得方向,在装配时有意识地将镗套按误差方向转过1、2角,则装配后二镗套孔得孔距为O1O2O1O2O1 O1cos1+ O2 O2cos2设O1O2100、15 mm,二镗套孔内、外圆同轴度为0、015 mm,装配时令160、2120则O1O2100、150、015cos600、015 cos120100 mm本例实质上就是利用镗套同轴度误差来抵消模板得孔距误差,其优点就是零件制造精度可以放宽,经济性好,采用误差抵消装配法装配还能得到很高得装配精度。但每台产品装配时均需测出整体优势误差得大小与方向,并计算出数值,增加了辅助时间,影响生产效率,对工人技术水平要求高。因此,除单件小批生产得工艺装备与精密机床采用此种方法外,一般很少采用。
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100