1、微分方程 第七章 积分问题积分问题 微分方程问题微分方程问题 推广 微分方程的基本概念 第一节微分方程的基本概念微分方程的基本概念引例引例 几何问题几何问题物理问题物理问题 第七章 列车在平直路上以的速度行驶,制动时获得加速度求制动后列车的运动规律.解解:设列车在制动后 t 秒行驶了s 米,已知由前一式两次积分,可得利用后两式可得因此所求运动规律为说明说明:利用这一规律可求出制动后多少时间列车才能停住,以及制动后行驶了多少路程.即求 s=s(t).引例引例2.2.常微分方程偏微分方程含未知函数及其导数的方程叫做微分方程微分方程.方程中所含未知函数导数的最高阶数叫做微分方程(本章内容)(n 阶显
2、式微分方程)微分方程的基本概念微分方程的基本概念一般地,n 阶常微分方程的形式是的阶阶.分类或 使方程成为恒等式的函数.即如果微分方程的解解 存在函数 在区间 有阶连续导数,且在区间 上满足则称 微分方程在区间上的解.引例2通解通解 解中所含独立的任意常数的个数与方程 确定通解中任意常数的条件.n 阶方程的初始条件初始条件(或初值条件或初值条件):的阶数相同.特解特解引例1 通解:特解:不含任意常数的解,定解条件定解条件 其图形称为积分曲线积分曲线.验证函数是微分方程的解,的特解.解解:这说明是方程的解.是两个独立的任意常数,利用初始条件易得:故所求特解为故它是方程的通解.并求满足初始条件 例例1.1.求所满足的微分方程.例例2.已知曲线上点 P(x,y)处的法线与 x 轴交点为 Q解解:如图所示,令 Y=0,得 Q 点的横坐标即点 P(x,y)处的法线方程为且线段 PQ 被 y 轴平分,