ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:191KB ,
资源ID:4402175      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4402175.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022高考数学一轮复习课后限时集训14导数的概念及运算理.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022高考数学一轮复习课后限时集训14导数的概念及运算理.doc

1、课后限时集训14导数的概念及运算建议用时:45分钟一、选择题1函数yln(2x21)的导数是()A.B.C. D.By4x,故选B.2(2019成都模拟)已知函数f(x)的导函数为f(x),且满足f(x)2xf(e)ln x(其中e为自然对数的底数),则f(e)()A1 B1Ce De1D由已知得f(x)2f(e),令xe,可得f(e)2f(e),则f(e).故选D.3一质点沿直线运动,如果由始点起经过t秒后的位移为st33t28t,那么速度为零的时刻是()A1秒末 B1秒末和2秒末C4秒末 D2秒末和4秒末Ds(t)t26t8,由导数的定义可知vs(t),令s(t)0,得t2或4,即2秒末和

2、4秒末的速度为零,故选D.4(2019贵阳模拟)曲线yxln x在点(e,e)处的切线方程为()Ay2xe By2xeCy2xe Dyx1A对yxln x求导可得yln x1,则曲线在点(e,e)处的切线斜率为ln e12,因此切线方程为ye2(xe),即y2xe.故选A.5已知直线yax是曲线yln x的切线,则实数a()A.B. C.D.C设切点坐标为(x0,ln x0),由yln x的导函数为y知切线方程为yln x0(xx0),即yln x01.由题意可知解得a.故选C.二、填空题6.已知函数yf(x)及其导函数yf(x)的图像如图所示,则曲线yf(x)在点P处的切线方程是_xy20根

3、据导数的几何意义及图像可知,曲线yf(x)在点P处的切线的斜率kf(2)1,又过点P(2,0),所以切线方程为xy20.7若曲线f(x)ax3ln x存在垂直于y轴的切线,则实数a的取值范围是_(,0)由题意,可知f(x)3ax2,又存在垂直于y轴的切线,所以3ax20,即a(x0),故a(,0)8设函数f(x)x3ax2,若曲线yf(x)在点P(x0,f(x0)处的切线方程为xy0,则点P的坐标为_(1,1)或(1,1)由题意知,f(x)3x22ax,所以曲线yf(x)在点P(x0,f(x0)处的切线斜率为f(x0)3x2ax0,又切线方程为xy0,所以x00,且解得或所以当时,点P的坐标为

4、(1,1);当时,点P的坐标为(1,1)三、解答题9已知函数f(x)x34x25x4.(1)求曲线f(x)在点(2,f(2)处的切线方程;(2)求经过点A(2,2)的曲线f(x)的切线方程解(1)f(x)3x28x5,f(2)1,又f(2)2,曲线在点(2,f(2)处的切线方程为y2x2,即xy40.(2)设曲线与经过点A(2,2)的切线相切于点P(x0,x4x5x04),f(x0)3x8x05,切线方程为y(2)(3x8x05)(x2),又切线过点P(x0,x4x5x04),x4x5x02(3x8x05)(x02),整理得(x02)2(x01)0,解得x02或1,经过点A(2,2)的曲线f(

5、x)的切线方程为xy40或y20.10已知函数f(x)x32x23x(xR)的图像为曲线C.(1)求过曲线C上任意一点切线斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围解(1)由题意得f(x)x24x3,则f(x)(x2)211,即过曲线C上任意一点切线斜率的取值范围是1,)(2)设曲线C的其中一条切线的斜率为k,则由已知(2)中条件并结合(1)中结论可知,解得1k0或k1,故由1x24x30或x24x31,得x(,2(1,3)2,)1(2018全国卷)设函数f(x)x3(a1)x2ax.若f(x)为奇函数,则曲线yf(x)在点(0,0

6、)处的切线方程为()Ay2x ByxCy2x DyxD因为函数f(x)x3(a1)x2ax为奇函数,所以f(x)f(x),所以(x)3(a1)(x)2a(x)x3(a1)x2ax,所以2(a1)x20,因为xR,所以a1,所以f(x)x3x,所以f(x)3x21,所以f(0)1,所以曲线yf(x)在点(0,0)处的切线方程为yx.故选D.2曲线ye在点(4,e2)处的切线与坐标轴所围成的三角形的面积为()Ae2 B4e2C2e2 De2D易知曲线ye在点(4,e2)处的切线斜率存在,设其为k.ye,kee2,切线方程为ye2e2(x4),令x0,得ye2,令y0,得x2,所求面积为S2|e2|

7、e2.3若直线ykxb是曲线yln x2的切线,也是曲线yex的切线,则b_.0或1设直线ykxb与曲线yln x2的切点为(x1,y1),与曲线yex的切点为(x2,y2),yln x2的导数为y,yex的导数为yex,可得kex2.又由k,消去x2,可得(1ln x1)(x11)0,则x1或x11,则直线ykxb与曲线yln x2的切点为或(1,2),与曲线yex的切点为(1,e)或(0,1),所以ke或k1,则切线方程为yex或yx1,可得b0或1.4设函数f(x)ax,曲线yf(x)在点(2,f(2)处的切线方程为7x4y120.(1)求f(x)的解析式;(2)证明曲线f(x)上任一点

8、处的切线与直线x0和直线yx所围成的三角形面积为定值,并求此定值解(1)方程7x4y120可化为yx3,当x2时,y.又因为f(x)a,所以解得所以f(x)x.(2)证明:设P(x0,y0)为曲线yf(x)上任一点,由y1知曲线在点P(x0,y0)处的切线方程为yy0(xx0),即y(xx0)令x0,得y,所以切线与直线x0的交点坐标为.令yx,得yx2x0,所以切线与直线yx的交点坐标为(2x0,2x0)所以曲线yf(x)在点P(x0,y0)处的切线与直线x0,yx所围成的三角形的面积S|2x0|6.故曲线yf(x)上任一点处的切线与直线x0,yx所围成的三角形面积为定值,且此定值为6.1定

9、义1:若函数f(x)在区间D上可导,即f(x)存在,且导函数f(x)在区间D上也可导,则称函数f(x)在区间D上存在二阶导数,记作f(x)f(x).定义2:若函数f(x)在区间D上的二阶导数恒为正,即f(x)0恒成立,则称函数f(x)在区间D上为凹函数已知函数f(x)x3x21在区间D上为凹函数,则x的取值范围是_因为f(x)x3x21,所以f(x)3x23x,f(x)6x3,令f(x)0得x,故x的取值范围是.2已知函数f(x)ax3bx2cx在x1处取得极值,且在x0处的切线的斜率为3.(1)求f(x)的解析式;(2)若过点A(2,m)可作曲线yf(x)的三条切线,求实数m的取值范围解(1)f(x)3ax22bxc,依题意又f(0)3,所以c3,所以a1,所以f(x)x33x.(2)设切点为(x0,x3x0),因为f(x)3x23,所以f(x0)3x3,所以切线方程为y(x3x0)(3x3)(xx0)又切线过点A(2,m),所以m(x3x0)(3x3)(2x0),所以m2x6x6,令g(x)2x36x26,则g(x)6x212x6x(x2),由g(x)0得x0或x2,g(x)极小值g(0)6,g(x)极大值g(2)2,画出草图知,当6m2时,g(x)2x36x26有三个解,所以m的取值范围是(6,2)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服