ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:84.50KB ,
资源ID:4399227      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4399227.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(七年级下册教案.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级下册教案.doc

1、 七年级下册教案 7.3.2 《多边形的内角和》教案 教 学 任 务 分 析 教 学 目 标 知识目标 了解多边形的内角和与外角和公式,进一步了解转化的数学思想 能力目标 1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。 2、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。 3、通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。 情感情感 通过学生间交流、探索,进一步激发

2、学生的学习热情,求知欲望,养成良好的数学思维品质。 重点 探索多边形的内角和及外角和公式 难点 如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。 教 学 流 程 安 排 活 动 流 程 活 动 内 容 和 目 的 活动1 回顾三角形内角和,引入课题 回顾三角形内角和知识,激发学生的学习兴趣,为后继问题解决作铺垫。 活动2 探索四边形内角和 鼓励学生寻找多种分割形式,深入领会转化的本质—将四边形转化为三角形问题来解决。 活动3 探索五边形内角和,推导出任意多边形内角和公式 通过类比得出方法,探索多边形内角和公式,体会数形间的联系,感受从特

3、殊到一般的思考问题的方法。 活动4 探索六边形及n边形外角和 通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。 活动5 多边形内角和与外角和公式的运用 综合运用所学知识去解决问题。 活动6 归纳总结,布置作业 小结及课后探究习题梳理所学知识,达到巩固,发展提高的目的。 教 学 过 程 设 计 问 题 与 情 况 师 生 行 为 设 计 意 图 活动1 问题:你知道三角形的内角和是多少度吗? A B C 三角形的内角和等于18

4、0° 课题:多边形的内角和与外角和 1、教师提问,学生思考作答。 2、教师总结:三角形的内角和等于180°。 3、引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和与外角和。 回顾已学知识:三角形的内角和等于180°,为后继问题的解决作铺垫。 利用学生的好奇心设疑,激发学生的求知欲望,使他们能自觉地参与到下面多边形内角和探索的活动中去。 活动2 问题:你知道任意一个四边形的内角和是多少吗? 学生展示探究成果 A D B C

5、 分成2个三角形 180°×2=360° D A O B C 分割成4个三角形 180°×4-360°=360° A D B P C 分割成3个三角形 180°×3-180°=360° 1、引导学生猜想:四边形的内角和等于360°。 2、学生分小组交流与探究,进一步来论证自己的猜想。 3、由各小组成员汇报探索的思路与方法,讲明理由。 4、教师汇总学生所探索出的不同方法,除测

6、量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。 5、教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。 教师可点拨学生从正方形、长方形这两个特殊的多边形的内角和,进而猜测出四边形的内角和等于360°。 “解放学生的手,解放学生的大脑”,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。 鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。 活动3 问题1:你知道五边形的内角和是多少度吗? A E

7、 B D C A E O B D C A E B D P C 问题2:你知道n边形的内角和吗? (n-2)·180° 180°n-360° 180°(n-1)-180° 板书: 多边形内角

8、和公式:(n-2)·180° 例:求15边形内角和的度数 1、教师提出问题,学生思考后分组活动。 2、教师深入小组,参与小组活动,及时了解学生探索的情况。 3、让学生归纳借助辅助线将五边形分割成三角形的不同分法。 4、探究五边形的边数与所分割的三角形个数间的关系,进而得出五边形内角和与边数的关系。 5、根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。 6、通过计算让学生巩固并掌握n边形内角和公式。 通过增加图形的复杂性,让学生再一次经历转化的过程,加深对转化思想方法的理解,在探索过程中进

9、一步体现新课标“以人为本”的思想,再一次发展学生的平理能力和语言表达能力。 通过四边形、五边形特殊,多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。 活动4 问题1:小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度? 例:六边形外角和等于多少度? E 4 D 5 F 3 C 6 2

10、 A 1 B 问题2:n边形外角和等于多少度? n边形外角和等于360° 1、学生思考作答,教师作适当点拨。通过课件演示,由学生发现:六边形的外角和等于360°。 2、教师引导学生利用多边形的内角和公式,进一步论证六边形外角和等于360°。即:六个平角减去六边形内角和等于六边形外角和360° 3、进行类比推理并小结:n边形外角和等于n个平角减去n边形内角和,与边数无关。 180°n-(n-2)·180°=360° 经历现实情况引出六边形的外角和等于360°,从学生已有的生活经验出发,更能激发学生的学习兴趣。 通过类比和扩展方法的使用,使学生掌握复杂

11、问题化为简单问题,化未知为已知的思想方法。 活动5 问题:你能运用多边形内角和与外角和公式解决问题吗? (1)教科书P88 例1 (2)求下列图中x值 150 °2x° 120 ° x° 80 ° 120 ° 75 ° x° (3)一个多边形的内角和与外角和相等,它是几边形? 探究题:小明有一个设想:2008年奥运会在北京召开,他设计一个内角和

12、是2008°的多边形图案多有意义,小明的想法能实现吗? 1、学生利用当堂所学的知识通过小组合作解决问题,巩固本节知识。 2、教师从学生的回答中,了解学生有条理表达自己的思考过程。 3、引导学生利用多边形的内角和公式解释小明的设想能否实现,进一步让学生感受到数学的趣味性,以及与实际生活间的密切联系。 学生自主探索巩固知识和获得技能,掌握基本的数学思想。 教师及时了解学生的学习效果,让学生经历用知识解决问题的过程。 同时激发学生的学习和积极性,建立学好数学的自信心。学生巩固、发展、提高。 活动6 问题:谈谈本节课你有哪些收获? 作业:课本P90.2 P90.6 1、学生反思学习和解决问题的过程。 2、鼓励学生大胆表达,并对学生的进步给予肯定,树立学生学好数学的自信心。 通过回顾和反思,让学生看到自己的进步,激励学生,使学生自己在今后的学习中会不断进步,提高学生的学习热情。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服