ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:241KB ,
资源ID:4388812      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4388812.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022高考数学一轮复习课后限时集训16利用导数解决函数的极值最值理.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022高考数学一轮复习课后限时集训16利用导数解决函数的极值最值理.doc

1、课后限时集训16利用导数解决函数的极值、最值建议用时:45分钟一、选择题1函数y在0,2上的最大值是()A.B.C0 D.A易知y,x0,2,令y0,得0x1,令y0,得1x2,所以函数y在0,1上单调递增,在(1,2上单调递减,所以y在0,2上的最大值是y|x1,故选A.2已知函数f(x)cos xaln x在x处取得极值,则a()A.B.C. DCf(x)sin x,且f0,0,即a,经验证,符合题意故选C.3函数f(x)x3bx2cxd的大致图像如图所示,则xx等于()A. B.C. D.C函数f(x)的图像过原点,所以d0.又f(1)0且f(2)0,即1bc0且84b2c0,解得b1,

2、c2,所以函数f(x)x3x22x,所以f(x)3x22x2,由题意知x1,x2是函数的极值点,所以x1,x2是f(x)0的两个根,所以x1x2,x1x2,所以xx(x1x2)22x1x2.4(2019东莞模拟)若x1是函数f(x)axln x的极值点,则()Af(x)有极大值1 Bf(x)有极小值1Cf(x)有极大值0 Df(x)有极小值0Af(x)axln x,x0,f(x)a,由f(1)0得a1,f(x)1.由f(x)0得0x1,由f(x)0得x1,f(x)在(0,1)上单调递增,在(1,)上单调递减f(x)极大值f(1)1,无极小值,故选A.5已知函数f(x)x33x29x1,若f(x

3、)在区间k,2上的最大值为28,则实数k的取值范围为()A3,) B(3,)C(,3) D(,3D由题意知f(x)3x26x9,令f(x)0,解得x1或x3,所以f(x),f(x)随x的变化情况如下表:x(,3)3(3,1)1(1,)f(x)00f(x)极大值极小值又f(3)28,f(1)4,f(2)3,f(x)在区间k,2上的最大值为28,所以k3.二、填空题6设aR,若函数yexax有大于零的极值点,则实数a的取值范围是_(,1)yexax,yexa.函数yexax有大于零的极值点,则方程yexa0有大于零的解,x0时,ex1,aex1.7已知函数f(x)ln xax存在最大值0,则a_.

4、f(x)a,x0.当a0时,f(x)a0恒成立,函数f(x)单调递增,不存在最大值;当a0时,令f(x)a0,解得x.当0x时,f(x)0,函数f(x)单调递增;当x时,f(x)0,函数f(x)单调递减f(x)maxfln 10,解得a.8做一个无盖的圆柱形水桶,若要使其体积是27,且用料最省,则圆柱的底面半径为_3设圆柱的底面半径为R,母线长为l,则VR2l27,l,要使用料最省,只需使圆柱的侧面积与下底面面积之和S最小由题意,SR22RlR22.S2R,令S0,得R3,根据单调性得当R3时,S最小三、解答题9已知函数f(x)ln xax(aR)(1)当a时,求f(x)的极值;(2)讨论函数

5、f(x)在定义域内极值点的个数解(1)当a时,f(x)ln xx,函数f(x)的定义域为(0,),f(x).令f(x)0,得x2,于是当x变化时,f(x),f(x)的变化情况如下表:x(0,2)2(2,)f(x)0f(x)极大值故f(x)在定义域上的极大值为f(2)ln 21,无极小值(2)由(1)知,函数f(x)的定义域为(0,),f(x)a(x0)当a0时,f(x)0在(0,)上恒成立,即函数f(x)在(0,)上单调递增,此时函数f(x)在定义域上无极值点;当a0时,令f(x)0,得x.当x时,f(x)0,当x时,f(x)0,故函数f(x)在x处有极大值综上所述,当a0时,函数f(x)无极

6、值点;当a0时,函数f(x)有一个极大值点10已知函数f(x)ln x.(1)若a0,试判断f(x)在定义域内的单调性;(2)若f(x)在1,e上的最小值为,求实数a的值解(1)由题意得f(x)的定义域是(0,),且f(x),因为a0,所以f(x)0,故f(x)在(0,)上单调递增(2)由(1)可得f(x),因为x1,e,若a1,则xa0,即f(x)0在1,e上恒成立,此时f(x)在1,e上单调递增,所以f(x)minf(1)a,所以a(舍去)若ae,则xa0,即f(x)0在1,e上恒成立,此时f(x)在1,e上单调递减,所以f(x)minf(e)1,所以a(舍去)若ea1,令f(x)0,得x

7、a,当1xa时,f(x)0,所以f(x)在(1,a)上单调递减;当axe时,f(x)0,所以f(x)在(a,e)上单调递增,所以f(x)minf(a)ln(a)1,所以a.综上,a.1设函数f(x)在R上可导,其导函数为f(x),且函数f(x)在x2处取得极小值,则函数yxf(x)的图像可能是()ABCDC由题意可得f(2)0,且当x2时,f(x)0,则yxf(x)0,故排除B和D;当x2时,f(x)0,所以当x(2,0)时,yxf(x)0,当x0时,yxf(x)0,故排除A,选C.2函数f(x)x33x1,若对于区间3,2上的任意x1,x2,都有|f(x1)f(x2)|t,则实数t的最小值是

8、()A20 B18C3 D0A原命题等价于对于区间3,2上的任意x,都有f(x)maxf(x)mint,f(x)3x23,当x3,1时,f(x)0,当x1,1时,f(x)0,当x1,2时,f(x)0.f(x)maxf(2)f(1)1,f(x)minf(3)19.f(x)maxf(x)min20,t20.即t的最小值为20.故选A.3(2019武汉模拟)若函数f(x)2x2ln x在其定义域的一个子区间(k1,k1)内存在最小值,则实数k的取值范围是_因为f(x)的定义域为(0,),又因为f(x)4x,所以由f(x)0解得x,由题意得解得1k.4已知一企业生产某产品的年固定成本为10万元,每生产

9、千件需另投入2.7万元,设该企业年内共生产此种产品x千件,并且全部销售完,每千件的销售收入为f(x)万元,且f(x)(1)写出年利润W(万元)关于年产品x(千件)的函数解析式;(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润年销售收入年总成本)解(1)由题意得W即W(2)当0x10时,W8.1xx310,则W8.1x2,因为0x10,所以当0x9时,W0,则W递增;当9x10时,W0,则W递减所以当x9时,W取最大值38.6万元当x10时,W9898238.当且仅当2.7x,即x时等号成立综上,当年产量为9千件时,该企业生产此产品所获年利润最大1若函数f(x)x33ax在

10、区间(1,2)上仅有一个极值点,则实数a的取值范围为_1,4)因为f(x)3(x2a),所以当a0时,f(x)0在R上恒成立,所以f(x)在R上单调递增,f(x)没有极值点,不符合题意; 当a0时,令f(x)0得x,当x变化时,f(x)与f(x)的变化情况如下表所示:x(,)(,)(,)f(x)00f(x)极大值极小值因为函数f(x)在区间(1,2)上仅有一个极值点,所以或解得1a4.2已知函数f(x)aln x(a0)(1)求函数f(x)的单调区间和极值;(2)是否存在实数a,使得函数f(x)在1,e上的最小值为0?若存在,求出a的值;若不存在,请说明理由解由题意,知函数的定义域为x|x0,

11、f(x)(a0)(1)由f(x)0解得x,所以函数f(x)的单调递增区间是;由f(x)0解得x,所以函数f(x)的单调递减区间是.所以当x时,函数f(x)有极小值faln aaaln a,无极大值(2)不存在理由如下:由(1)可知,当x时,函数f(x)单调递减;当x时,函数f(x)单调递增若01,即a1时,函数f(x)在1,e上为增函数,故函数f(x)的最小值为f(1)aln 111,显然10,故不满足条件若1e,即a1时,函数f(x)在上为减函数,在上为增函数,故函数f(x)的最小值为f(x)的极小值faln aaaln aa(1ln a)0,即ln a1,解得ae,而a1,故不满足条件若e,即0a时,函数f(x)在1,e上为减函数,故函数f(x)的最小值为f(e)a0,解得a,而0a,故不满足条件综上所述,这样的a不存在

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服