1、北师大版七年级数学上册同步试卷不含答案(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、按面划分,与圆锥为同一类几何体的是( )A .正方体 B .长方体 C .球 D .棱柱2、十个棱长为的正方体摆放成如图的形状,这个图形的表面积是( )A . B . C . D .3、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A .12 B .14 C .16 D .184、下列说法中正确的是( )A .四棱锥有4个面B .连接两点间的线段叫做两点间的距离C .如果线段,则M是线段AB的中点D .射
2、线和射线不是同一条射线5、将一个直角三角形绕它的直角边旋转一周得到的几何体是( )A . B . C . D .6、下列立体图形含有曲面的是( )A . B . C . D .7、下列图形中,不是柱体的是( )A . B . C . D .8、如下图所示将三角形绕直线l旋转一周,可以得到图(e)所示的立体图形的是( )A .图(a) B .图(b) C .图(c) D .图(d)9、如图所示,是由8个完全相同的小正方体搭成的几何体若小正方体的棱长为1,则该几何体的表面积是( )A .16 B .30 C .32 D .3410、与易拉罐类似的几何体是( )A .圆锥 B .圆柱 C .棱锥 D
3、 .棱柱11、矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是( ).A .56 B .32 C .24 D .6012、下列立体图形中,只由一个面围成的是( )A .正方体 B .圆锥 C .圆柱 D .球13、“汽车上雨刷器的运动过程”能说明的数学知识是( )A .点动成线 B .线动成面 C .面动成体 D .面与面交于线14、下列图形属于立体图形的是( )A .正方形 B .三角形 C .球 D .梯形15、将下列平面图形绕轴旋转一周,能得到图中所示立体图形的是( )A . B . C . D .二、填空题(每小题4分,共计20分)1、两个完全相同的长方体
4、的长宽高分别为5cm4cm3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是 cm3, 最大表面积是 cm22、在乒乓球、足球、羽毛球、六角螺母中,形状类似球体的有 3、如图是某圆锥的主视图和左视图,则该圆锥的表面积是 .4、长方体的长、宽、高分别是、,它的底面面积是 ;它的体积是 5、薄薄的硬币在桌面上转动时看上去象球,这说明了 点线面体的关系.三、判断题(每小题2分,共计6分)1、棱柱侧面的形状可能是一个三角形。( )2、体是由面围成的( )四、计算题(每小题4分,共计12分)1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4c
5、m和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?五、解答题(每小题4分,共计32分)1、观察下图,思考问题:(1)你认识上面的图片中的哪些物体?(2)这些物体的表面形状类似与哪些几何体?说说你的理由。(3)你能再举出一些常见的图形吗?;2、在直角三角形中两直角边分别长3厘米和4厘米,斜边长5厘米,则分别以一边所在直线为轴旋转一周
6、,得到的三个几何体的体积有何关系3、请写出下列几种情形所形成的图形:(1)手电筒的光线;(2)雷达扫描在屏幕上形成的图形;(3)光线所经过的路径;(4)一个直角三角形绕一条直角边旋转一周所形成的图形4、如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和5、(1)如图,(1)、(2)、(3)、(4)为四个平面图形,请数一数:每个平面图形各有多少个顶点?多少条边?它们分别围成了多少个区域?请你将结果填入下表(2)观察上表,推断一个平面图形的顶点数,边数,区域数之间有什么关系?6、从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底
7、面);(2)这个零件的体积7、在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转一周(结果用表示;你可能用到其中的一个公式,V圆柱=r2h,V球体=, V圆锥=h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?8、如图,ABC中,已知BAC45,ADBC于D,BD2,DC3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出ABD、ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出x的值.