1、七年级数学上册1.1生活中的图形达标试卷【可打印】(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计34分)1、如图,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )A . B . C . D .2、下列图形中,不是柱体的是( )A . B . C . D .3、如图,是直角三角形的高,将直角三角形按以下方式旋转一周可以得到右侧几何体的是( )A .绕着旋转 B .绕着旋转 C .绕着旋转 D .绕着旋转4、由4个棱长均为1的小正方形组成如图所示的几何体,这个几何体的表面积为( )A .18 B .15 C .12 D .65、下列
2、几何体中,不完全是由平面围成的是( )A . B . C . D .6、下面几种图形:三角形,长方形,立方体,圆,圆锥,圆柱其中属于立体图形的有( )A .1个 B .2个 C .3个 D .4个7、将下列平面图形绕轴旋转一周,能得到图中所示立体图形的是( )A . B . C . D .8、下列图形中不是立体图形的是( )A .圆锥 B .圆柱 C .长方形 D .棱柱9、如图,已知长方体ABCDEFGH,在下列棱中,与棱GC异面的( )A .棱EA B .棱GH C .棱AB D .棱GF10、如图所示,是由8个完全相同的小正方体搭成的几何体若小正方体的棱长为1,则该几何体的表面积是( )
3、A .16 B .30 C .32 D .3411、下列几何体中,由一个曲面和一个圆围成的几何体是( )A .球 B .圆锥 C .圆柱 D .棱柱12、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )A .20 B .22 C .24 D .2613、下列图形绕虚线旋转一周,便能形成圆锥体的是()A . B . C . D .14、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线 B .线动成面 C .面动成体 D .以上都不对15、下列立体图形含有曲面的是( )A . B . C . D .16、一个物体的外形是
4、长方体(如图(1),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )A .圆柱 B .球 C .圆锥 D .圆柱或球17、长方形纸板绕它的一条边旋转1周形成的几何体为( )A .圆柱 B .棱柱 C .圆锥 D .球二、填空题(每小题2分,共计40分)1、长方体的长、宽、高分别是、,它的底面面积是 ;它的体积是 2、十八世纪数学家欧拉证明了简单多面体中顶点数(),面数(),棱数()之间存在一个有趣的数量关系:,这就是著名的欧拉定理某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形拼接而成,且有24个顶点,每个顶点都
5、有3条棱,设该多面体外表面三角形个数是个,八边形的个数是,则x+y= 3、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 .4、一个几何体的三视图如图所示,则该几何体的表面积为 .(取3)5、硬币在桌面上快速地转动时,看上去像球,这说明了 6、一个小立方块的六个面分别标有数字1,-2,3,-4,5,-6,从三个不同方向看到的情形如图,则如图放置时的底面上的数字之和等于 。7、如图,由几个边长为1的小立方体所组成的几何体,从上面看到的形状图如图所示,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的表面积为 8、如果一个六棱柱的一条侧棱长
6、为5 cm,那么所有侧棱之和为 9、某种商品的外包装箱是长方体,其展开图的面积为430平方分米(如图),其中BC=5分米,EF=10分米,则AB的长度为 分米.10、笔尖在纸上写字说明 ;车轮旋转时看起来像个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明 .11、若三棱柱的高为6 cm,底面边长都为5 cm,则三棱柱的侧面展开图的周长为 cm,面积为 cm212、如图是某圆锥的主视图和左视图,则该圆锥的表面积是 .13、薄薄的硬币在桌面上转动时看上去象球,这说明了 点线面体的关系.14、如图所示为8个立体图形.其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 .15、当笔
7、尖在纸上移动时,形成 ,这说明: ;表针旋转时,形成了一个 ,这说明: ;长方形纸片绕它的一边旋转,形成的几何图形就是 ,这说明: .16、如图,长方形的长为、宽为,分别以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为 (结果保留)17、一个容积是125dm3的正方体棱长是 dm.18、两个完全相同的长方体的长宽高分别为5cm4cm3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是 cm3, 最大表面积是 cm219、如图,长方形的长为,宽为,将长方形绕边所在直线旋转后形成的立体图形的体积是 .20、如图,在长方体 ABCD -EFGH中,与棱CD异面的棱有 条.三
8、、计算题(每小题2分,共计6分)1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?四、解答题(每小题4分,共计20分)1、如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周求所形成的立体图形
9、的体积2、一个长12cm,宽12cm,高为8cm的长方体容器中装满了水.小明先把容器中的水倒满2个底面半径为3cm,高为5cm的圆柱体杯子,再把剩下的水全部倒入瓶子甲中.当瓶子甲正放时如图1,瓶内溶液的高度为20cm; 瓶子甲倒放时如图2,空余部分的高度为5cm. 求瓶子甲的容积. (取3,容器的厚度不计)3、如图,ABC中,已知BAC45,ADBC于D,BD2,DC3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出ABD、ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出x的值.4、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形其露在外面的表面积是多少?(整个立体图形摆放在地上)5、观察下图,思考问题:(1)你认识上面的图片中的哪些物体?(2)这些物体的表面形状类似与哪些几何体?说说你的理由。(3)你能再举出一些常见的图形吗?;
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100