1、北师大版七年级数学上册期中试卷(可编辑)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、某学校设计了如图的一个雕塑,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方块的棱长均为1 m,则需喷刷油漆的总面积为( )m2A .9 B .19 C .34 D .292、下列几何体中,属于棱锥的是( )A . B .C . D .3、下列几何体中,面的个数最多的是()A . B . C . D .4、下面几种图形:三角形,长方形,立方体,圆,圆锥,圆柱其中属于立体图形的有( )A .1个 B .2个 C .3个 D .4个5、将如
2、图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A . B . C . D .6、从下列物体抽象出来的几何图形可以看成圆柱的是( )A . B . C . D .7、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )A .3个 B .4个 C .5个 D .6个8、下列几何体中,属于柱体的有( )A .1个 B .2个 C .3个 D .4个9、下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )A . B . C . D .10、下列图形中,不属于立体图形的是( )A . B . C . D .11、如图是某几何体的三视图及相关数据,则该几何
3、体的表面积是( )A . B . C . D .12、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )A . B . C . D .13、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。A .208 B .148 C .128 D .18814、下图是由( )图形饶虚线旋转一周形成的A . B . C . D .15、下列几何图形中为圆锥的是( ).A . B . C . D .二、填空题(每小题4分,共计20分)1、如图所示为8个立体图形.其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 .2、如图,在正
4、方体ABCDABCD中,与棱AD平行的棱有 条3、如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为 cm3.(结果保留)4、如图所示,一个长方体的长为4cm,宽为3cm,高为5cm则长方体所有棱长的和为 ;长方体的表面积为 5、若正方体棱长的和是36,则它的体积是 三、判断题(每小题2分,共计6分)1、棱柱侧面的形状可能是一个三角形。( )2、体是由面围成的( )四、计算题(每小题4分,共计12分)1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积2、有一个长方形绕它的一边所
5、在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积五、解答题(每小题4分,共计32分)1、把下列几何图形与相应的名称用线连起来:2、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?3、一个直角三角尺的两条直角
6、边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周(温馨提示:结果用表示;你可能用到其中的一个公式,V圆柱=r2h,V球体=R3, V圆锥=r2h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是 (2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?4、一个长12cm,宽12cm,高为8cm的长方体容器中装满了水.小明先把容器中的水倒满2个底面半径为3cm,高为5cm的圆柱体杯子,再把剩下的水全部倒入瓶子甲中.当瓶子甲正放时如图1,
7、瓶内溶液的高度为20cm; 瓶子甲倒放时如图2,空余部分的高度为5cm. 求瓶子甲的容积. (取3,容器的厚度不计)5、如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和6、如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和7、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图;方案二:以较短的一组对边中点所在直线为轴旋转,如图(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?8、已知如图是边长为2cm的小正方形,现小正方形绕其对称轴线旋转一周,可以得到一个几何体,求所得的这个几何体的体积.