1、专题一(弹簧类问题分类例析)弹簧类问题分类例析弹簧作为一种工具和模型,在各地历年高考中经常出现,笔者经过多年的研究,现分类总结如下:一、应用对称性解题例1 如图1所示,一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中( )A. 升降机的速度不断减小B. 升降机的加速度不断变大C. 先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功D. 到最低点时,升降机加速度的值一定大于重力加速度的值分析:弹簧下端触地后,升降机先加速后减速,加速度先减小后增大。由动能定理知识选项(C)正确,选项(D)学生难于
2、判断。设想有一轻弹簧竖直在水平地面上,将一小球无初速度放于弹簧上,可以证明小球的运动为简谐运动。由简谐运动的对称性知小球在最低点加速度的值等于在最高点的值。若小球以一定速度落在弹簧上,在最低点加速度的值必大于重力加速度的值。故选(D)正确。评析:简谐运动的对称性在弹簧问题的运动上有广泛的应用,因此在解决有关于位移、速度、加速度及力的变化时,经常用到。二、用胡克定律解题例2 如图2所示,两木块的质量分别为和,两轻质弹簧的劲度系数分别为和,上面木块压在上面的弹簧上(但不栓接),整个系统处于平衡状态。现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( )A. B. C.
3、D. 解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则评析:该题涉及到整体法和隔离法的应用,解题时要看清问题的关键,根据整体法和隔离法的运用条件,选择适当的方法。三、应用瞬时不变性解题例3 如图3所示,物体的质量为,为质量不计的轻弹簧,一端悬挂在天花板上,与竖直方向夹角为为一水平绳,现将剪断,求剪断瞬间物体的加速度。解析:设弹簧的拉力为的拉力为,重力为mg,物体在三个力的作用下保持平衡,则剪断线的瞬间,消失,而弹簧的长度未及发生变化,的大小和方向都不变,物体即在反方向获得加速度。因为,所以,方向在的反方向。评析:解决此类问题要注
4、意分步解决。先分析原状态受力情况,再分析变化瞬间,哪些力存在,哪些力消失,最后,用牛顿第二定律列方程求解。四、应用能量观点解题例4 质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为如图4所示。一物块从钢板正上方距离为3x的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。它们到达最底点后又向上运动。已知物块质量也为m时它们恰能回到O点。若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度。求物块向上运动到达的最高点与O点的距离。解析:本题涉及两个物理过程,第一过程就是m下落与钢板的作用过程,第二过程就是2m下落与钢板的作用过程。
5、第一过程包括:自由落体、碰撞、振动3个过程;第二过程包括:自由落体、碰撞、振动、竖直上抛4个过程。此题涉及的物理过程有4个,用到的物理规律和公式有4个,它将动量守恒和机械能守恒完美地统一在一起,交替使用,可以说是一道考查考生能力的好试题。物块与钢板碰撞时的速度由机械能守恒或自由落体公式可求得 (1)设表示质量为m的物块、钢板碰撞后一起向下运动的速度,因碰撞时间极短,系统所受外力远小于相互作用的内力,符合动量守恒,故 (2)设刚碰完时弹簧的弹性势能为,当它们一起回到O点时,弹簧无形变,弹簧势能为零,根据题意,由机械能守恒得 (3)设表示质量为2m的物块与钢板碰后开始一起向下运动的速度,由动量守恒
6、,则有 (4)设刚碰完时弹簧势能为,它们回到O点时,弹性势能为零,但它们仍继续向上运动,设此时速度为,则由机械能守恒定律得 (5)在上述两种情况下,弹簧的初始压缩量都是,故有 (6)当质量为2m的物块与钢板一起回到O点时,弹簧的弹力为零,物块与钢板只受到重力的作用,加速度为g,一过O点,钢板受到弹簧向下的拉力作用,加速度大于g,由于物块与钢板不粘连,物块不可能受到钢板的拉力,其加速度仍为g,方向向下,故在O点物块与钢板分离。分离后,物块以速度v竖直上升,由竖直上抛最大位移公式得 (7)即物块向上运动到达的最高点距O点的距离。评析:该题综合性很强,物理情景复杂,物理过程较多,难度较大,运用公式较多。此题主要用来考查学生分析、综合、推理判断能力,还考查了机械能守恒定律以及动量守恒定律的应用。解这种类型试题时,要认真分析物理全过程中有哪些物理现象,找到每一现象所对应的物理规律,并从这些规律所反映的各类物理量的关系,获得所求量的定性解释或定量计算。