ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:333KB ,
资源ID:4375617      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4375617.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(数据库系统基础教程第三章答案.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数据库系统基础教程第三章答案.doc

1、Exercise 3、1、1 Answers for this exercise may vary because of different interpretations、 Some possible FDs: Social Security number à name Area code à state Street address, city, state à zipcode Possible keys: {Social Security number, street address, city, state, area code, phone number} N

2、eed street address, city, state to uniquely determine location、 A person could have multiple addresses、 The same is true for phones、 These days, a person could have a landline and a cellular phone Exercise 3、1、2 Answers for this exercise may vary because of different interpretations Some possible

3、 FDs: ID à x-position, y-position, z-position ID à x-velocity, y-velocity, z-velocity x-position, y-position, z-position à ID Possible keys: {ID} {x-position, y-position, z-position} The reason why the positions would be a key is no two molecules can occupy the same point、 Exercise 3、1、

4、3a The superkeys are any subset that contains A1、 Thus, there are 2(n-1) such subsets, since each of the n-1 attributes A2 through An may independently be chosen in or out、 Exercise 3、1、3b The superkeys are any subset that contains A1 or A2、 There are 2(n-1) such subsets when considering A1 and t

5、he n-1 attributes A2 through An、 There are 2(n-2) such subsets when considering A2 and the n-2 attributes A3 through An、 We do not count A1 in these subsets because they are already counted in the first group of subsets、 The total number of subsets is 2(n-1) + 2(n-2)、 Exercise 3、1、3c The superkeys

6、 are any subset that contains {A1,A2} or {A3,A4}、 There are 2(n-2) such subsets when considering {A1,A2} and the n-2 attributes A3 through An、 There are 2(n-2) – 2(n-4) such subsets when considering {A3,A4} and attributes A5 through An along with the individual attributes A1 and A2、 We get the 2(n-4

7、) term because we have to discard the subsets that contain the key {A1,A2} to avoid double counting、 The total number of subsets is 2(n-2) + 2(n-2) – 2(n-4)、 Exercise 3、1、3d The superkeys are any subset that contains {A1,A2} or {A1,A3}、 There are 2(n-2) such subsets when considering {A1,A2} and th

8、e n-2 attributes A3 through An、 There are 2(n-3) such subsets when considering {A1,A3} and the n-3 attributes A4 through An We do not count A2 in these subsets because they are already counted in the first group of subsets、 The total number of subsets is 2(n-2) + 2(n-3)、 Exercise 3、2、1a We could t

9、ry inference rules to deduce new dependencies until we are satisfied we have them all、 A more systematic way is to consider the closures of all 15 nonempty sets of attributes、 For the single attributes we have {A}+ = A, {B}+ = B, {C}+ = ACD, and {D}+ = AD、 Thus, the only new dependency we get with

10、 a single attribute on the left is CàA、 Now consider pairs of attributes: {AB}+ = ABCD, so we get new dependency ABàD、 {AC}+ = ACD, and ACàD is nontrivial、 {AD}+ = AD, so nothing new、 {BC}+ = ABCD, so we get BCàA, and BCàD、 {BD}+ = ABCD, giving us BDàA and BDàC、 {CD}+ = ACD, giving CDàA、 For the

11、 triples of attributes, {ACD}+ = ACD, but the closures of the other sets are each ABCD、 Thus, we get new dependencies ABCàD, ABDàC, and BCDàA、 Since {ABCD}+ = ABCD, we get no new dependencies、 The collection of 11 new dependencies mentioned above are: CàA, ABàD, ACàD, BCàA, BCàD, BDàA, BDàC, CDà

12、A, ABCàD, ABDàC, and BCDàA、 Exercise 3、2、1b From the analysis of closures above, we find that AB, BC, and BD are keys、 All other sets either do not have ABCD as the closure or contain one of these three sets、 Exercise 3、2、1c The superkeys are all those that contain one of those three keys、 That

13、 is, a superkey that is not a key must contain B and more than one of A, C, and D、 Thus, the (proper) superkeys are ABC, ABD, BCD, and ABCD、 Exercise 3、2、2a i) For the single attributes we have {A}+ = ABCD, {B}+ = BCD, {C}+ = C, and {D}+ = D、 Thus, the new dependencies are AàC and AàD、 Now consid

14、er pairs of attributes: {AB}+ = ABCD, {AC}+ = ABCD, {AD}+ = ABCD, {BC}+ = BCD, {BD}+ = BCD, {CD}+ = CD、 Thus the new dependencies are ABàC, ABàD, ACàB, ACàD, ADàB, ADàC, BCàD and BDàC、 For the triples of attributes, {BCD}+ = BCD, but the closures of the other sets are each ABCD、 Thus, we get new

15、dependencies ABCàD, ABDàC, and ACDàB、 Since {ABCD}+ = ABCD, we get no new dependencies、 The collection of 13 new dependencies mentioned above are: AàC, AàD, ABàC, ABàD, ACàB, ACàD, ADàB, ADàC, BCàD, BDàC, ABCàD, ABDàC and ACDàB、 ii) For the single attributes we have {A}+ = A, {B}+ = B, {C}+ = C

16、 and {D}+ = D、 Thus, there are no new dependencies、 Now consider pairs of attributes: {AB}+ = ABCD, {AC}+ = AC, {AD}+ = ABCD, {BC}+ = ABCD, {BD}+ = BD, {CD}+ = ABCD、 Thus the new dependencies are ABàD, ADàC, BCàA and CDàB、 For the triples of attributes, all the closures of the sets are each ABC

17、D、 Thus, we get new dependencies ABCàD, ABDàC, ACDàB and BCDàA、 Since {ABCD}+ = ABCD, we get no new dependencies、 The collection of 8 new dependencies mentioned above are: ABàD, ADàC, BCàA, CDàB, ABCàD, ABDàC, ACDàB and BCDàA、 iii) For the single attributes we have {A}+ = ABCD, {B}+ = ABCD, {C}

18、 = ABCD, and {D}+ = ABCD、 Thus, the new dependencies are AàC, AàD, BàD, BàA, CàA, CàB, DàB and DàC、 Since all the single attributes’ closures are ABCD, any superset of the single attributes will also lead to a closure of ABCD、 Knowing this, we can enumerate the rest of the new dependencies、 The c

19、ollection of 24 new dependencies mentioned above are: AàC, AàD, BàD, BàA, CàA, CàB, DàB, DàC, ABàC, ABàD, ACàB, ACàD, ADàB, ADàC, BCàA, BCàD, BDàA, BDàC, CDàA, CDàB, ABCàD, ABDàC, ACDàB and BCDàA、 Exercise 3、2、2b i) From the analysis of closures in 3、2、2a(i), we find that the only key is A、 All

20、other sets either do not have ABCD as the closure or contain A、 ii) From the analysis of closures 3、2、2a(ii), we find that AB, AD, BC, and CD are keys、 All other sets either do not have ABCD as the closure or contain one of these four sets、 iii) From the analysis of closures 3、2、2a(iii), we find t

21、hat A, B, C and D are keys、 All other sets either do not have ABCD as the closure or contain one of these four sets、 Exercise 3、2、2c i) The superkeys are all those sets that contain one of the keys in 3、2、2b(i)、 The superkeys are AB, AC, AD, ABC, ABD, ACD, BCD and ABCD、 ii) The superkeys are all

22、those sets that contain one of the keys in 3、2、2b(ii)、 The superkeys are ABC, ABD, ACD, BCD and ABCD、 iii) The superkeys are all those sets that contain one of the keys in 3、2、2b(iii)、 The superkeys are AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD and ABCD、 Exercise 3、2、3a Since A1A2…AnC contains

23、A1A2…An, then the closure of A1A2…AnC contains B、 Thus it follows that A1A2…AnCàB、 Exercise 3、2、3b From 3、2、3a, we know that A1A2…AnCàB、 Using the concept of trivial dependencies, we can show that A1A2…AnCàC、 Thus A1A2…AnCàBC、 Exercise 3、2、3c From A1A2…AnE1E2…Ej, we know that the closure contai

24、ns B1B2…Bm because of the FD A1A2…Anà B1B2…Bm、 The B1B2…Bm and the E1E2…Ej bine to form the C1C2…Ck、 Thus the closure of A1A2…AnE1E2…Ej contains D as well、 Thus, A1A2…AnE1E2…EjàD、 Exercise 3、2、3d From A1A2…AnC1C2…Ck, we know that the closure contains B1B2…Bm because of the FD A1A2…Anà B1B2…Bm、 The

25、 C1C2…Ck also tell us that the closure of A1A2…AnC1C2…Ck contains D1D2…Dj、 Thus, A1A2…AnC1C2…CkàB1B2…BkD1D2…Dj、 Exercise 3、2、4a If attribute A represented Social Security Number and B represented a person’s name, then we would assume AàB but BàA would not be valid because there may be many people

26、 with the same name and different Social Security Numbers、 Exercise 3、2、4b Let attribute A represent Social Security Number, B represent gender and C represent name、 Surely Social Security Number and gender can uniquely identify a person’s name (i、e、 ABàC)、 A Social Security Number can also unique

27、ly identify a person’s name (i、e、 AàC)、 However, gender does not uniquely determine a name (i、e、 BàC is not valid)、 Exercise 3、2、4c Let attribute A represent latitude and B represent longitude、 Together, both attributes can uniquely determine C, a point on the world map (i、e、 ABàC)、 However, neith

28、er A nor B can uniquely identify a point (i、e、 AàC and BàC are not valid)、 Exercise 3、2、5 Given a relation with attributes A1A2…An, we are told that there are no functional dependencies of the form B1B2…Bn-1àC where B1B2…Bn-1 is n-1 of the attributes from A1A2…An and C is the remaining attribute f

29、rom A1A2…An、 In this case, the set B1B2…Bn-1 and any subset do not functionally determine C、 Thus the only functional dependencies that we can make are ones where C is on both the left and right hand sides、 All of these functional dependencies would be trivial and thus the relation has no nontrivial

30、 FD’s、 Exercise 3、2、6 Let’s prove this by using the contrapositive、 We wish to show that if X+ is not a subset of Y+, then it must be that X is not a subset of Y、 If X+ is not a subset of Y+, there must be attributes A1A2…An in X+ that are not in Y+、 If any of these attributes were originally in

31、 X, then we are done because Y does not contain any of the A1A2…An、 However, if the A1A2…An were added by the closure, then we must examine the case further、 Assume that there was some FD C1C2…CmàA1A2…Aj where A1A2…Aj is some subset of A1A2…An、 It must be then that C1C2…Cm or some subset of C1C2…Cm

32、is in X、 However, the attributes C1C2…Cm cannot be in Y because we assumed that attributes A1A2…An are only in X+ and are not in Y+、 Thus, X is not a subset of Y、 By proving the contrapositive, we have also proved if X ⊆ Y, then X+ ⊆ Y+、 Exercise 3、2、7 The algorithm to find X+ is outlined on pg、

33、76、 Using that algorithm, we can prove that (X+)+ = X+、 We will do this by using a proof by contradiction、 Suppose that (X+)+ ≠ X+、 Then for (X+)+, it must be that some FD allowed additional attributes to be added to the original set X+、 For example, X+ à A where A is some attribute not in X+、 Ho

34、wever, if this were the case, then X+ would not be the closure of X、 The closure of X would have to include A as well、 This contradicts the fact that we were given the closure of X, X+、 Therefore, it must be that (X+)+ = X+ or else X+ is not the closure of X、 Exercise 3、2、8a If all sets of attribu

35、tes are closed, then there cannot be any nontrivial functional dependencies、 Suppose A1A2、、、AnàB is a nontrivial dependency、 Then {A1A2、、、An}+ contains B and thus A1A2、、、An is not closed、 Exercise 3、2、8b If the only closed sets are ø and {A,B,C,D}, then the following FDs hold: AàB AàC AàD BàA

36、 BàC BàD CàA CàB CàD DàA DàB DàC ABàC ABàD ACàB ACàD ADàB ADàC BCàA BCàD BDàA BDàC CDàA CDàB ABCàD ABDàC ACDàB BCDàA Exercise 3、2、8c If the only closed sets are ø, {A,B} and {A,B,C,D}, then the following FDs hold: AàB BàA CàA CàB CàD DàA DàB DàC ACàB ACàD ADàB ADàC BCàA

37、 BCàD BDàA BDàC CDàA CDàB ABCàD ABDàC ACDàB BCDàA Exercise 3、2、9 We can think of this problem as a situation where the attributes A,B,C represent cities and the functional dependencies represent one way paths between the cities、 The minimal bases are the minimal number of pathways that are n

38、eeded to connect the cities、 We do not want to create another roadway if the two cities are already connected、 The systematic way to do this would be to check all possible sets of the pathways、 However, we can simplify the situation by noting that it takes more than two pathways to visit the two ot

39、her cities and e back、 Also, if we find a set of pathways that is minimal, adding additional pathways will not create another minimal set、 The two sets of minimal bases that were given in example 3、11 are: {AàB, BàC, CàA} {AàB, BàA, BàC, CàB} The additional sets of minimal bases are: {CàB, BàA,

40、 AàC} {AàB, AàC, BàA, CàA} {AàC, BàC, CàA, CàB} Exercise 3、2、10a We need to pute the closures of all subsets of {ABC}, although there is no need to think about the empty set or the set of all three attributes、 Here are the calculations for the remaining six sets: {A}+=A {B}+=B {C}+=ACE {AB}+

41、ABCDE {AC}+=ACE {BC}+=ABCDE We ignore D and E, so a basis for the resulting functional dependencies for ABC is: CàA and ABàC、 Note that BC->A is true, but follows logically from C->A, and therefore may be omitted from our list、 Exercise 3、2、10b We need to pute the closures of all subsets of {A

42、BC}, although there is no need to think about the empty set or the set of all three attributes、 Here are the calculations for the remaining six sets: {A}+=AD {B}+=B {C}+=C {AB}+=ABDE {AC}+=ABCDE {BC}+=BC We ignore D and E, so a basis for the resulting functional dependencies for ABC is: ACàB、

43、 Exercise 3、2、10c We need to pute the closures of all subsets of {ABC}, although there is no need to think about the empty set or the set of all three attributes、 Here are the calculations for the remaining six sets: {A}+=A {B}+=B {C}+=C {AB}+=ABD {AC}+=ABCDE {BC}+=ABCDE We ignore D and E,

44、so a basis for the resulting functional dependencies for ABC is: ACàB and BCàA、 Exercise 3、2、10d We need to pute the closures of all subsets of {ABC}, although there is no need to think about the empty set or the set of all three attributes、 Here are the calculations for the remaining six sets: {

45、A}+=ABCDE {B}+=ABCDE {C}+=ABCDE {AB}+=ABCDE {AC}+=ABCDE {BC}+=ABCDE We ignore D and E, so a basis for the resulting functional dependencies for ABC is: AàB, BàC and CàA、 Exercise 3、2、11 For step one of Algorithm 3、7, suppose we have the FD ABCàDE、 We want to use Armstrong’s Axioms to show th

46、at ABCàD and ABCàE follow、 Surely the functional dependencies DEàD and DEàE hold because they are trivial and follow the reflexivity property、 Using the transitivity rule, we can derive the FD ABCàD from the FDs ABCàDE and DEàD、 Likewise, we can do the same for ABCàDE and DEàE and derive the FD ABCà

47、E、 For steps two through four of Algorithm 3、7, suppose we have the initial set of attributes of the closure as ABC、 Suppose also that we have FDs CàD and DàE、 According to Algorithm 3、7, the closure should bee ABCDE、 Taking the FD CàD and augmenting both sides with attributes AB we get the FD ABCà

48、ABD、 We can use the splitting method in step one to get the FD ABCàD、 Since D is not in the closure, we can add attribute D、 Taking the FD DàE and augmenting both sides with attributes ABC we get the FD ABCDàABCDE、 Using again the splitting method in step one we get the FD ABCDàE、 Since E is not in

49、the closure, we can add attribute E、 Given a set of FDs, we can prove that a FD F follows by taking the closure of the left side of FD F、 The steps to pute the closure in Algorithm 3、7 can be mimicked by Armstrong’s axioms and thus we can prove F from the given set of FDs using Armstrong’s axioms、

50、 Exercise 3、3、1a In the solution to Exercise 3、2、1 we found that there are 14 nontrivial dependencies, including the three given ones and eleven derived dependencies、 They are: CàA, CàD, DàA, ABàD, ABà C, ACàD, BCàA, BCàD, BDàA, BDàC, CDàA, ABCàD, ABDàC, and BCDàA、 We also learned that the three

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服