ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:616KB ,
资源ID:4370840      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4370840.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(七年级数学:相交线与平行线-培优复习(附详细答案).doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学:相交线与平行线-培优复习(附详细答案).doc

1、 七年级数学:相交线与平行线-培优复习(附详细答案) 七年级数学:相交线与平行线 培优复习 例题精讲 例1.如图(1),直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°, 求∠3的度数。 解:∵ a∥b, ∴ ∠3=∠4(两直线平行,内错角相等) ∵ ∠1+∠3=∠2+∠4=180°(平角的定义) ∴ ∠1=∠2 (等式性质) 则 3x+70=5x+22 解得x=24 即∠1=142°  ∴ ∠3=180°-∠1=38° 图(1) 评注:建立角度之间的关系,即

2、建立方程(组),是几何计算常用的方法。 例2.已知:如图(2), AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D =192°, ∠B-∠D=24°,求∠GEF的度数。 解:∵AB∥EF∥CD ∴∠B=∠BEF,∠DEF=∠D(两直线平行,内错角相等) ∵∠B+∠BED+∠D =192°(已知) 即∠B+∠BEF+∠DEF+∠D=192° ∴2(∠B+∠D)=192°(等量代换) 则∠B+∠D=96°(等式性质) ∵∠B-∠D=24°(已知)

3、 图(2) ∴∠B=60°(等式性质) 即∠BEF=60°(等量代换) ∵EG平分∠BEF(已知) ∴∠GEF=∠BEF=30°(角平分线定义) 例3.如图(3),已知AB∥CD,且∠B=40°,∠D=70°,求∠DEB的度数。 解:过E作EF∥AB ∵ AB∥CD(已知) ∴ EF∥CD(平行公理) ∴ ∠BEF=∠B=40° ∠DEF=∠D=70°(两直线平行,内错角相等) ∵ ∠DEB=∠DEF-∠BEF ∴ ∠DEB =∠D-∠B=30° 评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅助线。

4、                   图(3) 例4.平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同交点? 解:2条直线产生1个交点, 第3条直线与前面2条均相交,增加2个交点,这时平面上3条直线共有1+2=3个交点; 第4条直线与前面3条均相交,增加3个交点,这时平面上4条直线共有1+2+3=6个交点; … 则 n条直线共有交点个数:1+2+3+…+ (n-1)=n(n-1) 评注:此题是平面上n条直线交点个数最多的情形,需要仔细观察,由简及繁,深入思考,从中发现规律。 例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线

5、问能确定多少条直线? 解:6条不同的直线最多确定:5+4+3+2+1=15条直线,除去共线的3点中重合多算的2条直线,即能确定的直线为15-2=13条。 另法:3点所在的直线外的3点间最多能确定3条直线,这3点与直线上的3点最多有3×3=9条直线,加上3点所在的直线共有:3+9+1=13条 评注:一般地,平面上n个点最多可确定直线的条数为:1+2+3+…+(n-1)=n(n-1) 例6.10条直线两两相交,最多将平面分成多少块不同的区域?     解:2条直线最多将平面分成2+2=4个不同区域; 3条直线中的第3条直线与另两条直线相交,最多有两个交点,此直线被这两点分成

6、3段,每一段将它所在的区域一分为二,则区域增加3个,即最多分成2+2+3=7个不同区域; 同理:4条直线最多分成2+2+3+4=11个不同区域; … ∴ 10条直线最多分成2+2+3+4+5+6+7+8+9+10=56个不同区域 推广:n条直线两两相交,最多将平面分成2+2+3+4+…+n=1+n(n+1)=(n2+n+2)块不同的区域 思考:平面内n个圆两两相交,最多将平面分成多少块不同的区域? 巩固练习 1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线(  )条 A.6 B. 7  C.8  D.9 2.平面上三

7、条直线相互间的交点个数是   (  ) A.3  B.1或3  C.1或2或3   D.不一定是1,2,3 3.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有(  ) A.36条  B.33条  C.24条  D.21条 4.已知平面中有个点三个点在一条直线上,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这个点作一条直线,那么一共可以画出38条不同的直线,这时等于( ) (A)9 (B)10 (C)11 (D)12 5.若平行直线AB、CD与相交直线EF、GH相交成如图示的图形,则共得同旁内角(  )

8、 A.4对  B.8对  C.12对  D.16对 6.如图,已知FD∥BE,则∠1+∠2-∠3=( ) A.90°  B.135°  C.150°  D.180° 第7题 7.如图,已知AB∥CD,∠1=∠2,则∠E与∠F的大小关系 ; 8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还 有 交点 9.平面上3条直线最多可分平面为 个部分。 10.如图,已知AB∥CD∥EF,PS^GH于P,∠FRG=110°,则∠PSQ= 。 11.已知A、B

9、是直线L外的两点,则线段AB的垂直平分线与直线的交点个数是 。 12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。 13.已知:如图,DE∥CB ,求证:∠AED=∠A+∠B 第13题 14.已知:如图,AB∥CD,求证:∠B+∠D+∠F=∠E+∠G 第14题 15.如图,已知CB^AB,CE平分∠BCD,DE平分∠CDA, ∠EDC+∠ECD =90°, 求证:DA^AB 16.平面上两

10、个圆三条直线,最多有多少不同的交点? 17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域? 18.一直线上5点与直线外3点,每两点确定一条直线,最多确定多少条不同直线? 19.平面上有8条直线两两相交,试证明在所有的交角中至少有一个角小于23°。 答案 1. 5个点中任取2点,可以作4+3+2+1=10条直线,在一直线上的3个点中任取2点,可作2+1=3条,共可作10-3+1=8(条)故选C 2.平面上3条直线可能平行或重合。故选D 3.对于3条共点的直线,每条直线上有4个交点,截得3条不重叠的线段,3条直线共有9条不重叠的线

11、段 对于3条不共点的直线,每条直线上有5个交点,截得4条不重叠的线段,3条直线共有12条不重叠的线段。 故共有21条不重叠的线段。故选D 4.由个点中每次选取两个点连直线,可以画出条直线,若三点不在一条直线上,可以画出3条直线,若四点不在一条直线上,可以画出6条直线, ∴ 整理得 ∵ n+9>0 ∴ ∴选B。 5.直线EF、GH分别“截”平行直线AB、CD,各得2对同旁内角,共4对;直线AB、CD分别“截”相交直线EF、GH,各得6对同旁内角,共12对。因此图中共有同旁内角4+6=16对 6.∵FD∥BE ∴∠2=∠AGF ∵∠AGC=∠1-∠3 ∴∠

12、1+∠2-∠3=∠AGC+∠AGF=180° ∴选B7.解:∵AB∥CD  (已知)     ∴∠BAD=∠CDA(两直线平行,内错角相等) ∵∠1=∠2   (已知) ∴∠BAD+∠1=∠CDA+∠2(等式性质) 即∠EAD=∠FDA     ∴AE∥FD     ∴∠E=∠F 8.解:每两点可确定一条直线,这5点最多可组成10条直线,又每两条直线只有一个交点,所以共有交点个数为9+8+7+6+5+4+3+2+1=45(个) 又因平面上这5个点与其余4个点均有4条连线,这四条直线共有3+2+1=6个交点与平面上这一点重合应去掉,共应去掉5

13、×6=30个交点,所以有交点的个数应为45-30=15个 9.可分7个部分10.解 ∵AB∥CD∥EF ∴∠APQ=∠DQG=∠FRG=110° 同理∠PSQ=∠APS ∴∠PSQ=∠APQ-∠SPQ=∠DQG-∠SPQ =110°-90°=20° 11. 0个、1个或无数个 1)若线段AB的垂直平分线就是L,则公共点的个数应是无数个; 2)若AB^L,但L不是AB的垂直平分线,则此时AB的垂直平分线与L是平行的关系,所以它们没有公共点,即公共点个数为0个; 3)若AB与L不垂直,那么AB的垂直平分线与直线L一定相交,所以此时公共点的个数为1个 12.4条直线两两相交最多有

14、1+2+3=6个交点 13.证明:过E作EF∥BA ∴∠2=∠A(两直线平行,内错角相等)DE∥CB, EF∥BA ∴∠1=∠B(两个角的两边分别平行,这两个角相等) ∴∠1+∠2=∠B+∠A(等式性质) 即∠AED=∠A+∠B 14.证明:分别过点E、F、G作AB的平行线EH、PF、GQ, 则AB∥EH∥PF∥GQ(平行公理) ∵ AB∥EH ∴ ∠ABE=∠BEH(两直线平行,内错角相等) 同理:∠HEF=∠EFP      ∠PFG=∠FGQ ∠QGD=∠GDC ∴ ∠ABE+∠EFP+∠PFG+∠GDC=∠BEH+∠HEF+ ∠F

15、GQ+∠QGD(等式性质) 即 ∠B+∠D+∠EFG=∠BEF+∠GFD 15.证明:∵DE平分∠CDA  CE平分∠BCD∴∠EDC=∠ADE ∠ECD =∠BCE (角平分线定义) ∴∠CDA +∠BCD=∠EDC+∠ADE+∠ECD+∠BCE =2(∠EDC+∠ECD)=180° ∴ DA∥CB 又∵ CB^AB ∴ DA^AB 16.两个圆最多有两个交点,每条直线与两个圆最多有4个交点,三条直线最多有3个不同的交点,即最多交点个数为:2+4×3+3=17 17.(1)2个圆相交有交点2×1=1个, 第3个圆与前两个圆相交最多增加2×2=4个交点,这时共有交

16、点2+2×2=6个 第4个圆与前3个圆相交最多增加2×3=6个交点,这时共有交点2+2×2+2×3=12个 第5个圆与前4个圆相交最多增加2×4=8个交点 ∴ 5个圆两两相交最多交点个数为:2+2×2+2×3+2×4=20 (2)2个圆相交将平面分成2个区域 3个圆相看作第3个圆与前2个圆相交,最多有2×2=4个不同的交点,这4个点将第3个圆分成4段弧,每一段弧将它所在的区域一分为二,故增加2×2=4块区域,这时平面共有区域:2+2×2=6块 4个圆相看作第4个圆与前3个圆相交,最多有2×3=6个不同的交点,这6个点将第4个圆分成6段弧,每一段弧将它所在的区域一分为二,故增加2×3

17、=6块区域,这时平面共有区域:2+2×2+2×3=12块 5个圆相看作第5个圆与前4个圆相交,最多有2×4=8个不同的交点,这8个点将第5个圆分成8段弧,每一段弧将它所在的区域一分为二,故增加2×4=8块区域,这时平面最多共有区域:2+2×2+2×3+2×4=20块 18.∵ 直线上每一点与直线外3点最多确定3×5=15条直线;直线外3点间最多能确定3 条直线, ∴ 最多能确定15+3+1=19条直线 19.将这8条直线平移到共点后,构成8对互不重叠的对顶角,这8个角的和为180° 假设这8个角没有一个小于23°,则这8个角的和至少为: 23°×8=184°,这是不可能的.因此这8个角中至少有一个小于23°, ∴ 在所有的交角中至少有一个角小于23° 20.平面上有10条直线,若两两相交,最多可出现45个交点,题目要求只出现31个交点,就要减少14个交点,则必须出现平行线,若某一方向上有5条直线互相平行,则可减少10个交点;若有6条直线互相平行,则可减少15个交点;故在这个方向上最多可取5条平行线,这时还有4个交点需要减去,转一个方向取3条平行线,即可减少3个交点,这时还剩下2条直线和一个需要减去的点,只须让这2条直线在第三个方向上互相平行即可。 如图这三组平行线即为所求。 17

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服