ImageVerifierCode 换一换
格式:PPTX , 页数:41 ,大小:420.29KB ,
资源ID:4362546      下载积分:14 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4362546.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(季节调整的相关技术及其相关原理.pptx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

季节调整的相关技术及其相关原理.pptx

1、要点 为什么要进行季节调整季节调整的基本概念季节调整的基本方法X-11、X-11-ARIMA、X-12-ARIMATRAMO-SEATS 为什么要进行季节调整 由于不同的季节对经济活动的影响程度不同,使得同样的经济活动在不同季节的数据是不可比的。为了消除季节带来的这些不可比因素,需要进行季节调整。一、基本概念季节调整的基本定义:季节调整是一个数学过程,通过这个过程,将循环的非经济因素的影响从一个经济的时间序列中剔除出去一、基本概念 经济时间序列通常受多种因素的影响。一般而言,可以按照以下模型分解:其中,是经济时间序列,是趋势项,是季节项,是循环(周期)项,是不规则项。一般情况下,如果各项相互独

2、立则采用加法模型,如果相互关联则采用乘法模型。一、基本概念趋势项趋势项 趋势项代表着时间序列的长期趋势。它的特点是变化平稳。这些变化是由经济的结构性变动引起的,比如人口的增长、技术的进步、资本的累积等。循环项循环项 循环项的特点是随着不同的时期进行周期性变化。它所反映的是经济的繁荣与衰退。相对于趋势项而言,循环项更偏重于反应时间序列的瞬间变化。季节项季节项 季节项反映时间序列在不同年份的相同季节所呈现的周期性变化。它通常是由气候因素、日历结构、行政记录的截止时间等所引起的。不规则项不规则项 不规则项包含狭义不规则影响、异常值、其他不规则影响等所有的不可预测的影响因素。一、基本概念7种可能在经济

3、序列中产生影响的日历效应:季节效应、闰年效应、月份长度效应、季度长度效应、交易日效应、工作日效应、移动假日效应一、基本概念异常值(离群值)(1)加性异常值AO(Additive Outlier)一、基本概念(2)水平飘移LS(Level Shift)一、基本概念(3)暂时变化TC(Temporary Change)一、基本概念(4)斜线上升(Ramp Effect)一、基本概念一、基本概念季节调整的目的:去掉时间序列中的季节项。序列进行了季节调整之后可以看做是趋势项和不规则项的和。季节项的存在不利于短期数据分析,因此需要从原始数据中去掉季节项以便于进行经济学上的监测和分析。二、基本方法季节调整

4、的基本方法,按原理分主要有两大类:基于模型的方法基于滤波器的方法二、基本方法基于模型的方法 对原始时间序列的各个组成部分(趋势项、季节项等)分别建模,对每一个组成部分的模型使用kalman滤波器或相关技术进行估计。滤波器的权数是根据原始序列的性质来选择的。基本原理:在全部周期中提取不同强度的信号 假设:不规则成分为白噪声,原始序列具有随机特性 代表:TRAMO-SEATS注:白噪声原指音频和电信号在一定频带中的一种强度不变的干扰。简单的说就是一组,期望为0,方差收敛不变,变量之间不相关的时间序列。二、基本方法基于滤波器的方法 采用固定的滤波器(例如,移动平均)将原始序列分解成趋势项、季节项和不

5、规则项。基本原理:原始数据由一系列不同周期的成分构成,通过过滤器提出和减少某个周期的强度 代表:X-11-ARIMA、X-12-ARIMA二、基本方法小结基于模型的方法:信号提取法,趋势、季节、不规则成分在全部周期长度出现。不规则成分属于固定强度,季节成分以季节频率达到最大强度,趋势成分是在较长周期中最强有力的变动。基于滤波器的方法:每个组成成分仅以一个特定的周期长度出现,长的周期形成趋势,季节成分以季节频率出现,而不规则成分定义为任何其他长度的周期。三、基于滤波器的调整方法X-11(1965年,美国普查局)基于移动平均的季节调整方法什么是移动平均?当f=p的时候,这个移动平均被称为中心化移动

6、平均;当移动平均的系数是对称的时候,被称为对称移动平均;什么是好的移动平均?好的移动平均应做到:趋势保留消除季节性 考察增益函数减少不规则成分移动平均的作用PQ复合移动平均&Henderson移动平均PQ移动平均,即是先对序列进行一次P阶移动平均,再进行一次Q阶的移动平均可以克服偶数阶简单移动平均的不确定性PQ复合移动平均&Henderson移动平均PQ移动平均系数图Henderson移动平均系数图非对称Henderson移动对于p+f+1阶的移动平均,用它来对序列进行平滑的时候,序列的前p项和最后f项是得不到平滑的可以考虑非对称移动平均(Musgrave)X-11季节调整的基本步骤X-11中

7、对异常值的处理假设异常值序列的标准差为 ,均值为三个主要步骤:(1)根据每个不规则值偏离均值的距离,给它们设定权数,偏离太远的权重为0,可接受范围的权重为1,介于两者之间的权重也介于0、1之间(2)使用加权平均代替原有不规则值,修正I值(3)修正原始值YX-11中交易日因素的估计 简单回归模型 TD7模型 TD6模型 TD2和TD1模型X-11季节调整小结 X-11季节调整方法可以进行季度、月度数据的调整;可对交易日影响进行调整;可进行异常值的矫正处理。主要缺陷:(1)缺乏可用于整个序列范围的明确的模型(2)所有的线性平滑过程都是固有的,很难平滑最初和最后的观测值X-11-ARIMA季节调整X

8、-11-ARIMA(1975年,加拿大统计局)在X-11的基础上引进了随机建模的思想,在季节调整之前,首先通过建立ARIMA模型对序列进行向前的预测和向后的补充。什么是ARIMA?AR模型、MA模型、ARMA模型 AR模型、MA模型AR自回归过程P阶自回归过程MA移动平均过程Q阶移动平均过程ARMA模型、ARIMA模型ARMA(p,q)如果有d个单位根,经过d次差分后可以变换为一个平稳的自回归移动平均过程,那么就有了ARIMA过程X-11-ARIMA季节调整ARIMA建模的基本思想 将随时间推移而形成的数据序列视为一个随机序列。以时间序列的自相关分析为基础,用一定的数学模型来近似描述这个序列。

9、这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。X-11-ARIMA季节调整ARIMA建模的基本步骤1.根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律和平稳性。2.如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。3.根据时间序列模型的识别规则,建立相应的模型。4.进行参数估计,检验是否具有统计意义。(t检验)5.全部特征根的倒数必须在单位圆内。6.进行假设检验,诊断残差是否为白噪声。(Q检验)7

10、.利用已通过检验的模型进行向前向后的预测、补全。X-11-ARIMA季节调整一种特殊的ARIMA模型 这里P、D、Q表式季节性阶数,p、d、q表式非季节性阶数X-11-ARIMA中的ARIMA模型选项(0,1,1)(0,1,1)(0,1,2)(0,1,1)(2,1,0)(0,1,1)(0,2,2)(0,1,1)(2,1,2)(0,1,1)X-12-ARIMA季节调整X-12-ARIMA(1998年,美国普查局)增加了RegARIMA建模子程序,子程序可提供向前、向后的预测和估计补全,并在调用季节调整程序前,对各种影响因素做预调整。X-12-ARIMA季节调整RegARIMA的建模原理通过线性回

11、归构造时变均值函数代入一般的SARIMA模型,得 原始序列中减去回归效应,得到的残差是零均值序列,对残差差分后得到一个平稳序列。另一种形式为:RegARIMA的回归变量 中,主要包括了各种异常值以及日历相关的影响因素等。在传统的X-11方法中,这些成分的估计是在季节调整的过程中完成的。X-12-ARIMA将这些功能集中到了新增的RegARIMA模块中,同时在X-11模块中仍保留这些功能。X-11-ARIMA季节调整Q统计量和M1-M11诊断(值域0,3,接受域0,1)M1:以3个月为跨度的不规则因素的相对贡献M2:不规则因素对调整平稳的原始序列方差的贡献率M3:关于Henderson移动平均的

12、I/C比率M4:以趋势的平均持续时间描述的不规则成分的自相关量M5:MCD(趋势循环成分的变差超过不规则成分所需的月份数)M6:总的I/S季节移动性比率M7:稳定季节性相对于移动季节性的贡献M8:整个序列中季节成分逐月变化的度量M9:整个序列中集结成分的平均线性移动M10:近几年的季节成分逐月变化的度量M11:近几年的季节成分的平均线性移动X-11-ARIMA季节调整TRAMO-SEATS季节调整TRAMO-SEATS简介(1)使用TRAMO模块自动识别一个ARIMA模型(2)同时自动识别异常值(如果必要,计算其他回归变量,如交易日和移动假日)(3)TRAMO将线性化序列传递给SEATS,SEAT模块通过信号提取,完成季节调整谢谢

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服