ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:444KB ,
资源ID:4352018      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4352018.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【广东省湛江市】2017届普通高中高考三月模拟考试数学试卷(四).pdf)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【广东省湛江市】2017届普通高中高考三月模拟考试数学试卷(四).pdf

1、-1-/3 广东广东省省湛江市湛江市 2017 届普通高中高考三月模拟考试数学试届普通高中高考三月模拟考试数学试卷卷(四)(四)一、选择题:本大题共 10 小题,每小题 5 分,每小题只有一项是符合题目要求的 1函数()cosf xx与函数2()log1g xx的图像所有交点的横坐标之和为()A2 B4 C6 D8 2已知数列na,nb的前 n 项和分别是nA,nB,且1004A,100503B,若nnnnnn nCa Bb Aa b,(n+N),则数列nC的前 100 项和100T为()A507 B499 C2 012 D2 013 3对于下列命题:其中正确命题的个数是()在ABC中,若si

2、n2sin2AB,则ABC为等腰三角形,已知 a,b,c 是ABC的三边长,若2a,5b,6A,则ABC有两组解;设2012sin3a,2012cos3b,2012tan3c,则abc;将函数2sin(3)6yx图象向左平移6个单位,得到函数2cos(3)6yx图象 A0 B1 C2 D3 4已知双曲线1C:22221xyab(0a,0b)的离心率为2,若抛物线2C:22xpy(0p)的焦点到双曲线1C的渐近线的距离为 2,则抛物线的方程为()A28 33xy B216 33xy C28xy D216xy 5等腰三角形 ABC 中,5ABAC,30B,P 为 BC 边中线上任意一点,则CP B

3、C的值为()A752 B252 C5 D752 6函数()yf x为定义在R上的减函数,函数(1)yf x的图像关于点(1,0)对称,x,y 满足不等式22(2)(2)0f xxfyy,(1,2)M,(,)N x y,O 为坐标原点,则当14x时,OMON的取值范围为()A12,)B0,3 C3,12 D0,12 7函数()sin()f xAx(0A,0)的部分图像如图所示若函数()yf x在区间,m n上的值域为2,2,则nm的最小值是()A4 B3 C2 D1 8已知函数()yg x是定义在R上的奇函数,当0 x 时,2()logg xx,xyO622(第 7 题-2-/3 函数2()4f

4、 xx,则函数()()f xg x的大致图像为()A B C D 9 已知函数3211()232f xxaxbxc(a,b,cR)在区间(0,1)内取得极大值在区间(1,2)内取得极小值,则22(3)ab的取值范围为()A2(,2)2 B1(,4)2 C(1,2)D(1,4)10我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”已知1F,2F是一对相关 曲线的焦点,P 是它们在第一象限的交点,当1260FPF时,这一对相关曲线中双曲线的离心率是()A2 33 B2 C3 D2 二、填空题(本大题共 5 小题,每小题 5 分,共 25 分,把正确答案填在题中横线上)11()lnx

5、f xx的单调减区间是_ 12 设()f x是定义在R上且周期为 2 的函数,在区间 1,1上,1,10()2,011axxf xbxxx 其中 a,bR若13()()22ff,则3ab的值为_ 13设为锐角,若4cos()65,则sin(2)12的值为_ 14已知定义在R上的函数()f x是奇函数且满足3()()2fxf x,(2)3f,数列na满足11a ,且21nnSann(其中nS为na的前 n 项和),则56()()f af a_ 15给出下列四个命题:其中正确的是_ 函数()ln2f xxx在区间(1,e)上存在零点;若0()0fx,则函数()yf x在0 xx处取得极值;若1m,

6、则函数212log(2)yxxm的值域为 R;“1a”是“函数e()1exxaf xa在定义域上是奇函数”的充分不必要条件 三、解答题:(本大题共6小题,满分75分,解答应给出文字说明,证明过程或演算步骤)-3-/3 16(本小题满分 12 分)在ABC中,已知3ABACBA BC(1)求证:tan3tanBA;(2)若5cos5C 求 A 的值 17(本小题满分 12 分)2013 年春节期间,高速公路车辆较多某调查公司在太原从七座以下小型汽车中按进服务区的先后每间隔 50 辆就抽取一辆的抽样方法抽取 40 名驾驶员进行询问调查,将他们在某段高速公路的车速(/km h)分成六段:60,65)

7、,65,70),70,75),75,80),80,85),85,90)后得到如图的频率分布直方图(1)某调查公司在采样中,用到的是什么抽样方法?(2)求这 40 辆小型车辆车速的众数和中位数的估计值(3)若从车速在60,70)的车辆中任抽取 2 辆,求车速在65,70)的车辆至少有一辆的概率 18(本小题满分 12 分)如图,菱形 ABCD 的边长为 6,60BAD,ACBDO将菱形 ABCD 沿对角线 AC 折起,得到三棱锥,点 M 是棱 BC 的中点,3 2DM (1)求证:平面 ABC平面 MDO;(2)求三棱锥MABD的体积 19(本小题满分12分)已知椭圆C的焦点为1(1,0)F,2

8、(1,0)F,点2(1,)2P 在椭圆C上(1)求椭圆 C 的方程;(2)若抛物线22ypx(0p)与椭圆 C 相交于点 M,N,当OMN(O 是坐标原点)的面积取得最大值时,求 p 的值 20(本小题满分 12 分)已知2()2lnf xaxx,(0,ex,其中e是自然对数的底(1)若()f x在1x 处取得极值,求 a 的值;(2)求()f x的单调区间;(3)设21ea,()5lnxg xa ,存在1x,2(0,ex,使得12()()9f xg x成立,求 a 的取值范围 21已知数列na中,11a,11()4nnnaa,n*N,定义2112344.4nnnSaaaa()求54nnnSa;()求数列21ka(k*N)的通项公式

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服