ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:85KB ,
资源ID:4346416      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4346416.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(机械专业外文翻译中英文翻译.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

机械专业外文翻译中英文翻译.doc

1、外文翻译英文原文Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive costConveyor systems have become larger and more complex and drive systems h

2、ave also been going through a process of evolution and will continue to do soNowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine

3、)The ability to control drive acceleration torque is critical to belt conveyors performanceAn efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limitsFor load sharing on multiple drivestorque and speed control are also impor

4、tant considerations in the drive systems design. Due to the advances in conveyor drive control technology,at present many more reliableCost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers choices1.1 Analysis on conveyor drive technol

5、ogies11 Direct drivesFull-voltage startersWith a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear driveDirect full-voltage starters are adequate for relatively low-power, simple-profile conveyorsWith direct fu11-voltage startersno control is provide

6、d for various conveyor loads anddepending on the ratio between fu11- and no-1oad power requirements,empty starting times can be three or four times faster than full loadThe maintenance-free starting system is simple,low-cost and very reliableHowever, they cannot control starting torque and maximum s

7、tall torque;thereforethey are limited to the low-power, simple-profile conveyor belt drivesReduced-voltage startersAs conveyor power requirements increase,controlling the applied motor torque during the acceleration period becomes increasingly importantBecause motor torque 1s a function of voltage,m

8、otor voltage must be controlledThis can be achieved through reduced-voltage starters by employing a silicon controlled rectifier(SCR)A common starting method with SCR reduced-voltage starters is to apply low voltage initially to take up conveyor belt slackand then to apply a timed linear ramp up to

9、full voltage and belt speedHowever, this starting method will not produce constant conveyor belt accelerationWhen acceleration is completethe SCRs, which control the applied voltage to the electric motor are locked in full conduction, providing fu11-line voltage to the motorMotors with higher torque

10、 and pullup torque,can provide better starting torque when combined with the SCR starters, which are available in sizes up to 750 KWWound rotor induction motorsWound rotor induction motors are connected directly to the drive system reducer and are a modified configuration of a standard AC induction

11、motorBy inserting resistance in series with the motors rotor windingsthe modified motor control system controls motor torqueFor conveyor starting,resistance is placed in series with the rotor for low initial torqueAs the conveyor accelerates,the resistance is reduced slowly to maintain a constant ac

12、celeration torqueOn multiple-drive systemsan external slip resistor may be left in series with the rotor windings to aid in load sharingThe motor systems have a relatively simple designHowever, the control systems for these can be highly complex,because they are based on computer control of the resi

13、stance switchingToday,the majority of control systems are custom designed to meet a conveyor systems particular specificationsWound rotor motors are appropriate for systems requiring more than 400 kW DC motorDC motorsavailable from a fraction of thousands of kW ,are designed to deliver constant torq

14、ue below base speed and constant kW above base speed to the maximum allowable revolutions per minute(r/min)with the majority of conveyor drives, a DC shunt wound motor is usedWherein the motors rotating armature is connected externallyThe most common technology for controlling DC drives is a SCR dev

15、ice which allows for continual variable-speed operationThe DC drive system is mechanically simple, but can include complex custom-designed electronics to monitor and control the complete systemThis system option is expensive in comparison to other soft-start systemsbut it is a reliable, cost-effecti

16、ve drive in applications in which torque,1oad sharing and variable speed are primary considerationsDC motors generally are used with higher-power conveyors,including complex profile conveyors with multiple-drive systems,booster tripper systems needing belt tension control and conveyors requiring a w

17、ide variable-speed range12 Hydrokinetic couplingHydrokinetic couplings,commonly referred to as fluid couplingsare composed of three basic elements; the driven impeller, which acts as a centrifugal pump;the driving hydraulic turbine known as the runner and a casing that encloses the two power compone

18、ntsHydraulic fluid is pumped from the driven impeller to the driving runner, producing torque at the driven shaftBecause circulating hydraulic fluid produces the torque and speed,no mechanical connection is required between the driving and driven shaftsThe power produced by this coupling is based on

19、 the circulated fluids amount and density and the torque in proportion to input speedBecause the pumping action within the fluid coupling depends on centrifugal forcesthe output speed is less than the input speedReferred to as slipthis normally is between l% and 3%Basic hydrokinetic couplings are av

20、ailable in configurations from fractional to several thousand kW Fixed-fill fluid couplingsFixed-fill fluid couplings are the most commonly used soft-start devices for conveyors with simpler belt profiles and limited convex/concave sectionsThey are relatively simple,1ow-cost,reliable,maintenance fre

21、e devices that provide excellent soft starting results to the majority of belt conveyors in use todayVariable-fill drain couplingsDrainable-fluid couplings work on the same principle as fixed-fill couplingsThe couplings impellers are mounted on the AC motor and the runners on the driven reducer high

22、-speed shaftHousing mounted to the drive base encloses the working circuitThe couplings rotating casing contains bleed-off orifices that continually allow fluid to exit the working circuit into a separate hydraulic reservoirOil from the reservoir is pumped through a heat exchanger to a solenoid-oper

23、ated hydraulic valve that controls the filling of the fluid couplingTo control the starting torque of a single-drive conveyor system,the AC motor current must be monitored to provide feedback to the solenoid control valveVariable fill drain couplings are used in medium to high-kW conveyor systems an

24、d are available in sizes up to thousands of kW The drives can be mechanically complex and depending on the control parametersthe system can be electronically intricateThe drive system cost is medium to high, depending upon size specifiedHydrokinetic scoop control driveThe scoop control fluid couplin

25、g consists of the three standard fluid coupling components:a driven impeller, a driving runner and a casing that encloses the working circuitThe casing is fitted with fixed orifices that bleed a predetermined amount of fluid into a reservoirWhen the scoop tube is fully extended into the reservoir, t

26、he coupling is l00 percent filledThe scoop tube, extending outside the fluid coupling,is positioned using an electric actuator to engage the tube from the fully retracted to the fully engaged positionThis control provides reasonably smooth acceleration ratesto but the computer-based control system i

27、s very complexScoop control couplings are applied on conveyors requiring single or multiple drives from l50 kW to 750 kW.13 Variable-frequency control(VFC)Variable frequency control is also one of the direct drive methodsThe emphasizing discussion about it here is because that it has so unique chara

28、cteristic and so good performance compared with other driving methods for belt conveyor VFC devices Provide variable frequency and voltage to the induction motor, resulting in an excellent starting torque and acceleration rate for belt conveyor drivesVFC drivesavailable from fractional to several th

29、ousand(kW ), are electronic controllers that rectify AC line power to DC and,through an inverter, convert DC back to AC with frequency and voltage contro1VFC drives adopt vector control or direct torque control(DTC)technology,and can adopt different operating speeds according to different loadsVFC d

30、rives can make starting or stalling according to any given S-curvesrealizing the automatic track for starting or stalling curvesVFC drives provide excellent speed and torque control for starting conveyor beltsand can also be designed to provide load sharing for multiple driveseasily VFC controllers

31、are frequently installed on lower-powered conveyor drives,but when used at the range of medium-high voltage in the pastthe structure of VFC controllers becomes very complicated due to the limitation of voltage rating of power semiconductor devices,the combination of medium-high voltage drives and va

32、riable speed is often solved with low-voltage inverters using step-up transformer at the output,or with multiple low-voltage inverters connected in seriesThree-level voltage-fed PWM converter systems are recently showing increasing popularity for multi-megawatt industrial drive applications because

33、of easy voltage sharing between the series devices and improved harmonic quality at the output compared to two-level converter systems With simple series connection of devicesThis kind of VFC system with three 750 kW /23kV inverters has been successfully installed in ChengZhuang Mine for one 27-km l

34、ong belt conveyor driving system in following the principle of three-level inverter will be discussed in detail2 Neutral point clamped(NPC)three-level inverter using IGBTsThree-level voltage-fed inverters have recently become more and more popular for higher power drive applications because of their

35、 easy voltage sharing features1ower dv/dt per switching for each of the devices,and superior harmonic quality at the outputThe availability of HV-IGBTs has led to the design of a new range of medium-high voltage inverter using three-level NPC topologyThis kind of inverter can realize a whole range w

36、ith a voltage rating from 23 kV to 41 6 kV Series connection of HV-IGBT modules is used in the 33 kV and 41 6 kV devicesThe 23 kV inverters need only one HV-IGBT per switch2,3.21 Power sectionTo meet the demands for medium voltage applicationsa three-level neutral point clamped inverter realizes the

37、 power sectionIn comparison to a two-level inverterthe NPC inverter offers the benefit that three voltage levels can be supplied to the output terminals,so for the same output current quality,only 1/4 of the switching frequency is necessaryMoreover the voltage ratings of the switches in NPC inverter

38、 topology will be reduced to 1/2and the additional transient voltage stress on the motor can also be reduced to 1/2 compared to that of a two-level inverter The switching states of a three-level inverter are summarized in Table 1UV and W denote each of the three phases respectively;P N and O are the

39、 dc bus pointsThe phase U,for example,is in state P(positive bus voltage)when the switches S1u and S2u are closed,whereas it is in state N (negative bus voltage) when the switches S3u and S4u are closedAt neutral point clamping,the phase is in O state when either S2u or S3u conducts depending on pos

40、itive or negative phase current polarity,respectivelyFor neutral point voltage balancing,the average current injected at O should be zero22 Line side converterFor standard applicationsa l2-pulse diode rectifier feeds the divided DC-link capacitorThis topology introduces low harmonics on the line sid

41、eFor even higher requirements a 24-pulse diode rectifier can be used as an input converterFor more advanced applications where regeneration capability is necessary, an active frontend converter can replace the diode rectifier, using the same structure as the inverter23 Inverter controlMotor Contro1M

42、otor control of induction machines is realized by using a rotor fluxoriented vector controllerFig2 shows the block diagram of indirect vector controlled drive that incorporates both constant torque and high speed field-weakening regions where the PW M modulator was usedIn this figure,the command flu

43、x is generated as function of speedThe feedback speed is added with the feed forward slip command signal . the resulting frequency signal is integrated and then the unit vector signals(cos and sin )are generatedThe vector rotator generates the voltage and angle commands for the PW M as shownPWM Modu

44、latorThe demanded voltage vector is generated using an elaborate PWM modulatorThe modulator extends the concepts of space-vector modulation to the three-level inverterThe operation can be explained by starting from a regularly sampled sine-triangle comparison from two-level inverterInstead of using

45、one set of reference waveforms and one triangle defining the switching frequency, the three-level modulator uses two sets of reference waveforms Ur1 and Ur2 and just one triangleThus, each switching transition is used in an optimal way so that several objectives are reached at the same time Very low

46、 harmonics are generatedThe switching frequency is low and thus switching losses are minimizedAs in a two-level inverter, a zero-sequence component can be added to each set of reference waveform s in order to maximize the fundamental voltage componentAs an additional degree of freedom,the position o

47、f the reference waveform s within the triangle can be changedThis can be used for current balance in the two halves of the DC-1ink3 Testing resultsAfter Successful installation of three 750 kW /23 kV three-level inverters for one 27 km long belt conveyor driving system in Chengzhuang MineThe perform

48、ance of the whole VFC system was testedFig3 is taken from the test,which shows the excellent characteristic of the belt conveyor driving system with VFC controllerFig3 includes four curvesThe curve 1 shows the belt tensionFrom the curve it can be find that the fluctuation range of the belt tension i

49、s very smal1Curve 2 and curve 3 indicate current and torque separatelyCurve 4 shows the velocity of the controlled beltThe belt velocity have the“s”shape characteristicA1l the results of the test show a very satisfied characteristic for belt driving system4 ConclusionsAdvances in conveyor drive control technology in recent ye

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服