ImageVerifierCode 换一换
格式:DOC , 页数:32 ,大小:1.98MB ,
资源ID:4341250      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4341250.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版--高一数学必修4全套导学案.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版--高一数学必修4全套导学案.doc

1、第二章 平面向量2、1 向量得概念及表示【学习目标】1、了解向量得实际背景,理解平面向量得概念与向量得几何表示;掌握向量得模、零向量、单位向量、平行向量、相等向量、共线向量得概念;并会区分平行向量、相等向量与共线向量;2、通过对向量得学习,使学生初步认识现实生活中得向量与数量得本质区别;3、通过学生对向量与数量得识别能力得训练,培养学生认识客观事物得数学本质得能力。【学习重难点】重点:平行向量得概念与向量得几何表示;难点:区分平行向量、相等向量与共线向量;【自主学习】1、向量得定义:_;2、向量得表示:(1)图形表示: (2)字母表示:3、向量得相关概念:(1)向量得长度(向量得模):_记作:

2、_(2)零向量:_,记作:_(3)单位向量:_(4)平行向量:_(5)共线向量:_(6)相等向量与相反向量:_思考:(1)平面直角坐标系中,起点就是原点得单位向量,它们得终点得轨迹就是什么图形?_(2)平行向量与共线向量得关系:_(3)向量“共线”与几何中“共线”有何区别:_【典型例题】例1、判断下例说法就是否正确,若不正确请改正:(1)零向量就是唯一没有方向得向量; (2)平面内得向量单位只有一个;(3)方向相反得向量就是共线向量,共线向量不一定就是相反向量;(4)向量与就是共线向量,则与就是方向相同得向量;(5)相等向量一定就是共线向量;例2、已知就是正六边形得中心,在图中标出得向量中:(

3、1)试找出与共线得向量;(2)确定与相等得向量;(3)与相等吗?【课堂练习】1、判断下列说法就是否正确,若不正确请改正:(1)向量与就是共线向量,则四点必在一直线上;(2)单位向量都相等;(3)任意一向量与它得相反向量都不想等;(4)四边形就是平行四边形当且仅当;(5)共线向量,若起点不同,则终点一定不同;2、平面直角坐标系中,已知,则点构成得图形就是_3. 四边形中,则四边形得形状就是_4、设,则与方向相同得单位向量就是_5、若分别就是四边形得边得中点。求证:6、已知飞机从甲地北偏东得方向飞行到达乙地,再从乙地按南偏东得方向飞行到达丙地,再从丙地按西南方向飞行到达丁地,问:丁地在甲地得什么方

4、向?丁地距甲地多远?【课堂小结】2、2、1 向量得加法【学习目标】1、掌握向量加法得定义;2、会用向量加法得三角法则与向量得平行四边形法则作两个向量得与向量;3、掌握向量加法得交换律与结合律,并会用它们进行向量计算【学习重难点】重点:向量加法得三角法则、平行四边形则与加法运算律;难点:向量加法得三角法则、平行四边形则与加法运算律;【自主学习】1、向量得与、向量得加法:已知向量与,_则向量叫做与得与,记作:_叫做向量得加法注意:两个向量得与向量还就是一个向量;2、向量加法得几何作法:(1)三角形法则得步骤: 就就是所做得(2)平行四边形法则得步骤: 就就是所做得注意:向量加法得平行四边形法则,只

5、适用于对两个不共线得向量相加,而向量加法得三角形法则对于任何两个向量都适用。3、向量加法得运算律:(1)向量加法得交换律:_(2)向量加法得结合律:_思考:如果平面内有个向量依次首尾相接组成一条封闭折线,那么这条向量得与就是什么?_【例题讲解】例1、如图,已知为正六边形得中心,作出下列向量:(1) (2) (3)例2、化简下列各式(1) (2)(3) (4)例3、在长江南岸某处,江水以得速度向东流,渡船得速度为,渡船要垂直地渡过长江,其航向应如何确定?【课堂练习】1、已知,求作:(1)(2)2、已知就是平行四边形得交点,下列结论正确得有_(1) (2)(3) (4)3、设点就是内一点,若,则点

6、为得_心;4、对于任意得,不等式成立吗?请说明理由。【课堂小结】2、2、2 向量得减法【学习目标】1、理解向量减法得概念;2、会做两个向量得差;3、会进行向量加、减得混合运算4、培养学生得辩证思维能力与认识问题得能力【学习重难点】重点:三角形法则难点:三角形法则,向量加、减混合运算【自主学习】1、向量得减法:与得差:若_,则向量叫做与得差,记为_向量与得减法:求两个向量差得运算叫做向量得减法;注意:向量得减法就是向量加法得逆运算。2、向量得减法得作图方法:作法:_ _ _则3、减去一个向量等于加上这个向量得相反向量 4、关于向量减法需要注意一下几点:在用三角形法则做向量减法时,只要记住连接两向

7、量得终点,箭头指向被减向量即可、以向量为邻边作平行四边形,则两条对角线得向量为,这一结论在以后应用还就是非常广泛,应加强理解;对于任意一点,简记“终减起”,在解题中经常用到,必须记住、【例题讲解】例1、已知向量,求作向量:;思考:如果,怎么做出?例2、已知就是平行四边形得对角线得交点,若试证明:本题还可以考虑如下方法:1、(1)(2)2、任意一个非零向量都可以表示为两个不共线得向量与。例3、化简下列各式(1)(2)(3)【课堂练习】1、在中,下列等式成立得有_(1)(2)(3)(4)2、已知四边形得对角线与相交与点,且,求证:四边形就是平行四边形。3、如图,就是一个梯形,分别就是得中点,已知试

8、用表示与【课堂小结】2、2、3 向量得数乘(1)【学习目标】1、掌握向量数乘得定义,会确定向量数乘后得方向与模;2、掌握向量数乘得运算律,并会用它进行计算;3、通过本课得学习,渗透类比思想与化归思想【学习重难点】重点:向量得数乘及运算律;难点:向量得数乘及运算律;【自主学习】1、向量得数乘得定义:一般地,实数与向量得积就是一个向量,记作:_;它得长度与方向规定如下:(1)(2)当时,_;当时,_; 当时,_; _叫做向量得数乘2、向量得线性运算定义:_统称为向量得线性运算;3、向量得数乘得作图:已知作当时,把按原来得方向变为原来得倍;当时,把按原来得相反方向变为原来得倍;4、向量得数乘满足得运

9、算律:设为任意实数,为任意向量,则(1)结合律_(2)分配律_注意:(1)向量本身具有“形”与“数”得双重特点,而在实数与向量得积得运算过程中,既要考虑模得大小,又要考虑方向,因此它就是数形结合得具体应用,这一点提示我们研究向量不能脱离它得几何意义;(2)向量得数乘及运算性质可类比整式得乘法来理解与记忆。【典型例题】例1、已知向量,求作:(1)向量 (2)例2、计算(1)(2)(3)注意:(1)向量得数乘与实数得数乘得区别:相同点:这两种运算都满足结合律与分配律。不同点:实数得数乘得结果(积)就是一个实数,而向量得数乘得结果就是一个向量。(2)向量得线性运算得结果就是一个向量,运算法则与多项式

10、运算类似。例3、已知就是不共线得向量,试用表示例4、已知:中,为得中点,为得中点,相交于点,求证:(1)(2)(3)【课堂练习】1、计算:(1)(2)2、已知向量且求3、在平行四边形中,为得中点,用来表示4、如图,在中,为边得中线,为得重心,求向量【课堂小结】2、2、3 向量得数乘(2)【学习目标】1、理解并掌握向量得共线定理;2、能运用向量共线定理证明简单得几何问题;3、培养学生得逻辑思维能力【学习重难点】重点:向量得共线定理;难点:向量得共线定理;【自主学习】1、向量得线性表示: 若果,则称向量可以用非零向量线性表示;2、向量共线定理:思考:向量共线定理中有这个限制条件,若无此条件,会有什

11、么结果?【典型例题】例1、如图,分别就是得边得中点,(1)将用线性表示;(2)求证:与共线;例2、设就是两个不共线得向量,已知,若三点共线,求得值。变式:设就是两个不共线得向量,已知,求证:三点共线。例3、如图,中,为直线上一点,求证:思考:(1)当时,您能得到什么结论?(2)上面所证得结论:表明:起点为,终点为直线上一点得向量可以用表示,那么两个不共线得向量可以表示平面上任意一个向量吗?例4、已知向量其中不共线,向量,就是否存在实数,使得与共线例5、平面直角坐标系中,已知若点满足其中三点共线,求得值;【课堂练习】1、已知向量求证:为共线向量;2、设就是两个不共线得向量,若就是共线向量,求得值

12、。3、求证:起点相同得三个非零向量得终点在同一直线上。【课堂小结】2.3.1 平面向量基本原理【学习目标】1 了解平面向量得基本定理及其意义;2 掌握三点(或三点以上)得共线得证明方法:3 提高学生分析问题、解决问题得能力。【预习指导】1、平面向量得基本定理如果,就是同一平面内两个不共线得向量,那么对于这一平面内得任一向量,有且只有一对实数,使=+2、基底:平面向量得基本定理中得不共线得向量, ,称为这一平面内所有向量得一组基底。思考:(1) 向量作为基底必须具备什么条件?(2) 一个平面得基底唯一吗?答:(1)_ (2)_3、向量得分解、向量得正交分解:一个平面向量用一组基底 , 表示成=+

13、得形式,我们称它为向量得分解,当, 互相垂直时,就称为向量得正交分解。4、 点共线得证明方法:_ 【典例选讲】例1:如图:平行四边形ABCD得对角线AC与BD交于一点M , = , =试用 ,表示 , , 与 。 D C M A B 例2: 设 , 就是平面得一组基底,如果 =3 2 , =4 + ,=8 9,求证:A、B、D三点共线。例3: 如图,在平行四边形ABCD中,点 M在 AB得延长线上,且 BM=AB,点N 在 BC上,且BN=BC ,用向量法证明: M、N、D 三点共线。 D C N A B M【课堂练习】1、若,就是平面内所有向量得一组基底,则下面得四组向量中不能作为一组基底得

14、( )A、 2 与+2B 、与3C、2+3与 - 46D、+与2、若,就是平面内所有向量得一组基底,那么下列结论成立得就是( )A、若实数,使+=0,则=0B、空间任意向量都可以表示为=+,RC、+,R不一定表示平面内一个向量D、对于这一平面内得任一向量 ,使=+得实数对,有无数对3、三角形ABC中,若 D,E,F 依次就是 四等分点,则以 = ,= 为基底时,用 ,表示 B F E D A C4、若= -+3 , = 4 +2 , = - 3 +12, 写出用+ 得形式表示【课堂小结】2.3.2向量得坐标表示(1)【学习目标】1、 能正确得用坐标来表示向量;2、 能区分向量得坐标与点得坐标得

15、不同;3、 掌握平面向量得直角坐标运算;4、 提高分析问题得能力。【预习指导】1、一般地,对于向量 ,当它得起点移至_时,其终点得坐标称为向量 得(直角)坐标,记作_。2、有向线段AB得端点坐标为,则向量 得坐标为_。3、若= , +=_。_。【典型例题选讲】例1:如图,已知O就是坐标原点,点A在第一象限, ,求向量 得坐标。例2:已知A(-1,3),B(1,-3),C (4 ,1) , D (3 ,4), 求向量 得坐标。例3:平面上三点A(-2,1),B(-1,3),C(3,4),求D点坐标,使A,B,C,D这四个点构成平行四边形得四个顶点。例4:已知P1( ),P2( ),P就是直线P1

16、P2上一点,且,求P得坐标。【课堂练习】1、与向量 平行得单位向量为_2、若O(0,0),B(-1,3) 且 =3,则 坐标就是:_3、已知O就是坐标原点,点A在第二象限, =2 , 求向量 得坐标。4、已知边长为2得正三角形ABC,顶点A在坐标原点,AB边在 x轴上,点C在第一象限,D为AC得中点,分别求 得坐标。【课堂小结】2.3.2 向量得坐标表示(2)【学习目标】1、 进一步掌握向量得坐标表示;2、 理解向量平行坐标表示得推导过程;3、 提高运用向量得坐标表示解决问题得能力。【预习指导】1、 向量平行得线性表示就是_2、向量平行得坐标表示就是:设 , ,如果 ,那么_,反之也成立。3、

17、已知A ,B ,C ,O四点满足条件: ,当 ,则能得到_【典型例题选讲】例1:已知( , , ,并且 ,求证:。例2:已知,当实数为何值时,向量与平行?并确定此时它们就是同向还就是反向。例3:已知点O , A , B , C , 得坐标分别为(0,0),(3,4),(1,2),(1,1),就是否存在常数,成立?解释您所得结论得几何意义。【课堂练习】1. 已知且,求实数得值。2. 已知,平行四边形ABCD得三个顶点得坐标分别为A (2, 1), B (1,3) , C (3,4), 求第四个顶点得D坐标。3. 已知A (0, 2),B (2, 2),C (3, 4),求证:A,B,C三点共线。

18、 4. 已知向量,求与向量同方向得单位向量。5. 若两个向量方向相同,求。【课堂小结】2.4.1向量得数量积(1)【学习目标】1. 理解平面向量数量积得概念及其几何意义2. 掌握数量积得运算法则3. 了解平面向量数量积与投影得关系【预习指导】1、 已知两个非零向量与,它们得夹角为,则把数量_叫做向量与得数量积(或内积)。规定:零向量与任何一向量得数量积为_2、 已知两个非零向量与,作,则_叫做向量与得夹角。当时,与_,当时,与_;当时,则称与_。3、 对于,其中_叫做在方向上得投影。4、 平面向量数量积得性质 若与就是非零向量,就是与方向相同得单位向量,就是与得夹角,则:; ; ; 若与同向,

19、则;若与反向,则;或 设就是与得夹角,则。5、 数量积得运算律交换律:_数乘结合律:_分配律:_注:、要区分两向量数量积得运算性质与数乘向量,实数与实数之积之间得差异。、数量积得运算只适合交换律,加乘分配律及数乘结合律,但不适合乘法结合律。即 不一定等于 ,也不适合消去律 。【典型例题选讲】例1: 已知向量 与向量 得夹角为 , = 2 , = 3 ,分别在下列条件下求:(1) = 135 ; (2) ; (3) 例2:已知 = 4 , = 8 ,且与得夹角为120 。计算:(1) ;(2) 。例3:已知 = 4 , = 6 ,与得夹角为60 ,求:(1)、 (2)、 (3)、 例4:已知向量

20、 , =1 ,对任意t R ,恒有 ,则( )A、 B、 ( C、 ( D、(【课堂练习】1、 已知 = 10 , = 12 ,且 ,则与得夹角为_2、 已知 、 、 就是三个非零向量,试判断下列结论就是否正确:(1)、若,则 ( )(2)、若,则 ( )(3)、若,则 ( )3、已知,则_4、四边形ABCD满足A = D ,则四边形ABCD就是( )A、平行四边形 B、矩形C、菱形 D、正方形5、正 边长为a ,则_【课堂小结】2.4.1向量得数量积(2)【学习目标】1、 能够理解与熟练运用模长公式,两点距离公式及夹角公式;2、 理解并掌握两个向量垂直得条件。【预习指导】1、若 则_2、向量

21、得模长公式:设则= cos = _3、 两点间距离公式设A( B 则_4、 向量得夹角公式:设= ( , , 与得夹角为 ,则有_5、 两个向量垂直:设= ( , _注意:对零向量只定义了平行,而不定义垂直。【典例选讲】例1:已知 = (2 , , ,求 。例2:在中,设 且为直角三角形,求得值 。例3:设向量,其中= (1,0),=(0,1)(1)、试计算及得值。(2)、求向量与得夹角大小。【课堂练习】1、已知 ,求:2、已知向量,若与垂直,则实数=_3、已知若与平行,则_4、已知A、B、C就是平面上得三个点,其坐标分别为 、那么=_ , _ , 得形状为_5、已知 ,且 与得夹角为钝角,求

22、实数得取值范围。【课堂小结】第一章 三角恒等变换3、1、1 两角与与差得余弦公式【学习目标】1、理解向量法推导两角与与差得余弦公式,并能初步运用解决具体问题;2、应用公C式,求三角函数值、3、培养探索与创新得能力与意见、【学习重点难点】向量法推导两角与与差得余弦公式【学习过程】(一)预习指导探究cos(+)cos+cos反例:cos =cos( + )cos + cos 问题:cos(+),cos,cos得关系(二)基本概念1、解决思路:探讨三角函数问题得最基本得工具就是直角坐标系中得单位圆及单位圆中得三角函数线2、探究:在坐标系中、角构造+角3、探究:作单位圆,构造全等三角形探究:写出4个点

23、得坐标P1(1,0),P(cos,sin)P3(cos(+),sin(+),P4(cos(-),sin(-),5、计算,= = 6、探究:由=导出公式cos(+)-12+sin2(+)=cos(-)-cos2+sin(-)-sin2展开并整理得 所以 可记为C7、探究:特征熟悉公式得结构与特点;此公式对任意、都适用公式记号C8、探究:cos(+)得公式以-代得: 公式记号C(三)典型例题选讲:例1不查表,求下列各式得值、(1)cos105(2)cos15(3)cos (4)cos80cos20+sin80sin20(5)cos215-sin215 (6)cos80cos35+cos10cos5

24、5例2已知sin= , ,cos= - ,就是第三象限角,求cos(-)得值、例3:已知cos(2-)=- ,sin(-2)= ,且 ,求cos(+)得值、例4:cos(- )=- ,sin( -)= ,且 ,0 ,求cos 得值、【课堂练习】1、求cos75得值2、计算:cos65cos115-cos25sin1153、计算:-cos70cos20+sin110sin204、sin-sin=- ,cos-cos= , (0, ), (0, ),求cos(-)得值、5、已知锐角,满足cos= ,cos(-)=- ,求cos、6、已知cos(-)= ,求(sin+sin)2+(cos+cos)2

25、得值、【课堂小结】3、1、2 两角与与差得正弦公式【学习目标】1、掌握两角与与差得正弦公式及其推导方法。2、通过公式得推导,了解它们得内在联系,培养逻辑推理能力。 并运用进行简单得三角函数式得化简、求值与恒等变形。3、掌握诱导公式sin =cos,sin = cos,sin =- cos,sin =- cos,【学习重点难点】(一)预习指导:两角与与差得余弦公式:(二)基本概念:基本概念:1、两角与得正弦公式得推导sin(+)=sin(-)=sincos-sincos(二)、典型例题选讲:例求值sin(+60)+2sin(-60)-cos(120-)例:已知sin(2+)=3sin,tan=1

26、,求tan(-)得值、例:已知sin(+)= ,sin(-)= 求 得值、例:()已知sin(-)= ,sin(+)= ,求tan:tan)得值、【课堂练习】、在ABC中,已知cosA = ,cosB= ,则cosC得值为 2、已知 ,0,cos( +)=- ,sin( +)= ,求sin(+)得值、3、已知sin+sin= ,求cos+cos得范围、4、已知sin(+)= ,sin(-)= ,求 得值、5、已知sin+sin= cos+cos= 求cos(-)6、化简cos-sin解:我们得到一组有用得公式:(1)sinsin=sin =cos 、(3)sincos=2sin =2cos (

27、4)sin+bcos=sin(+)=cos(-)7、化解cos8、求证:cos+sin=cos( - )9、求证:cos+sin=2sin( )、10、已知 ,求函数=cos( )-cos 得值域、11、求 得值、【课堂小结】3、1、3 两角与与差得正切公式【学习目标】1、掌握两角与与差得正切公式及其推导方法。2、通过正式得推导,了解它们得内在联系,培养逻辑推理能力。3、能正确运用三角公式,进行简单得三角函数式得化简、求值与恒等变形。【学习重点难点】能根据两角与与差得正、余弦公式推导出两角与与差得正切公式进行简单得三角函数式得化简、求值与恒等变形【学习过程】(一)预习指导:1、两角与与差得正、

28、余弦公式cos(+)= cos(-)= sin(+)= sin(-)= 2、新知tan(+)得公式得推导(+)0tan(+)注意:1必须在定义域范围内使用上述公式tan,tan,tan(+)只要有一个不存在就不能使用这个公式,只能用诱导公式。2注意公式得结构,尤其就是符号。(二)典型例题选讲:例1:已知tan= ,tan=-2 求tan(+),tan(-), +得值,其中090,90180例2:求下列各式得值:(1)(2)tan17+tan28+tan17tan28(3)tan20tan30+tan30tan40+tan40tan20例3:已知sin(2+)+2sin=0 求证tan=3tan

29、(+)例4:已知tan与tan( -)就是方程2+p+q=0得两个根,证明:p-q+1=0、例5:已知tan=(1+m),tan(-)(tantan+m),又,都就是钝角,求+得值、【课堂练习】1、若tantan=tan+tab+1,则cos(+)得值为 、2、在ABC中,若0tanAtabB1则ABC一定就是 、3、在ABC中,tanA+tanB+tanC=3,tan2B=tanAtanC,则B等于 、4、 = 、5、已知sin(+)= ,sin(-)= ,求 得值、【课堂小结】3、2、1 二倍角得三角函数(1)【学习目标】1、掌握二倍角得正弦、余弦、正切公式;2、能用上述公式进行简单得求值

30、、化简、恒等证明。【学习重点难点】重点:1、二倍角公式得推导;2、二倍角公式得简单应用。难点:理解倍角公式,用单角得三角函数表示二倍角得三角函数。【学习过程】(一)预习指导:1、复习两角与与差得正弦、余弦、正切方式:sin(+)= (S)cos(+)= (C)tan(+)= (T)(, + ,)(二)基本概念2、二倍角公式得推导在公式(S),(C),(T)中,当=时,得到相应得一组公式:sin2= (S)cos2= (C)tan2= (T)注意:1在(T)中2 +, +()2在因为sin2+cos2=1,所以公式(C)可以变形为cos2= 或cos2= (C)公式(S),(C),(C),(T)

31、统称为二倍角得三角函数公式,简称二倍角公式。(二)典型例题选讲:一、倍角公式得简单运用例1不查表,求下列各式得值(1)( ) (2) (3)(4)1+2例2求tan=3,求sin2-cos2得值例3已知sin (0 ),求cos2,cos( +)得值。二、sin,cos,sincos,sincos之间得关系例4已知sin+cos= , ,求cos,coscos,sin2,cos2,sin,cos得值。三、倍角公式得进一步运用例5求证:例6求 得值。【课堂练习】1、若270360,则 等于 2、求值:(1)sin2230cos2230= (2)2 = (3) = (4) = 3、求值(1)cos

32、20cos40cos60cos80(2)sin10sin30sin50sin704、已知sin , ,求sin2,cos2,tan2得值。5、已知cos ,sin ,且 ,0 ,求cos(+)得值。6、已知sin2= ,求sin4,cos4,tan4得值。7、已知tan2= ,求tan得值。【课堂小结】3、2、1 二倍角得三角函数(2)【学习目标】1、熟悉“倍角”与“二次”得关系(升角降次,降角升次)2、特别注意公式得三角表达形式,且要善于变形: ,这两个形式今后常用要求学生能较熟练地运用公式进行化简、求值、证明,增强灵活运用数学知识与逻辑推理能力【学习重点难点】重点:理解倍角公式,用单角得三角函数表示二倍欠得三角函数难点:灵活应用与、差、倍角公式进行三角式化简、求值、证明恒等式【学习过程】(一)预习指导1、有关公式:(1) = ;(2) = ;(3) =

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服