ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:15.03KB ,
资源ID:433451      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/433451.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(初二数学下册之一次函数章节要点归纳整理.docx)为本站上传会员【小****库】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初二数学下册之一次函数章节要点归纳整理.docx

1、一、函数 1、变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。 变量还分为自变量和因变量。 2、常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。 3、函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值. 4、函数的三种表示法: (1)表达式法(解析式法);(2)列表法;(3)图象法. 用数学式子表示函数的方法叫做表达式法(解析式法)。 由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。 把这些对应值(有序的)

2、看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。 5、求函数的自变量取值范围的方法. (1)要使函数的表达式有意义:①整式(多项式和单项式)时为全体实数;②分式时,让分母≠0;③含二次根号时,让被开方数≠0 。 (2)对实际问题中的函数关系,要使实际问题有意义。注意可能含有隐含非负或大于0的条件。 6、求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值. 7、描点法画函数图象的一般步骤如下: Step1:列表(表中给出一些自变量的值及其对应的函数值); Step2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描

3、出表格中数值对应的各点); Step3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来). 8、判断y是不是x的函数的题型 ①给出解析式让你判断:可给x值来求y的值,若y的值唯一确定,则y是x的函数;否则不是。 ②给出图像让你判断:过x轴做垂线,垂线与图像交点多余一个(≥2)时,y不是x的函数;否则y是x的函数。 二、正比例函数 1、正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。 注意点①自变量x的次数是一次幂,且只含有x的一次项;②比例系数k≠0;③不含有常数项,只有x一次幂的单项而已。 2、正比例函数图

4、像:一般地,正比例函数的y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们称它为直线y=kx. 当k>0时,直线y=kx经过第一、三象限(正奇),从左向右上升,即随着x的增大y也增大。 当k<0时,直线y=kx经过第二、四象限(负偶),从左向右下降,即随着x的增大y反而减小。 画正比例函数的最简单方法: (1)先选取两点,通常选出(0,0)与点(1,k); (2)在坐标平面内描出点(0,0)与点(1,k); (3)过点(0,0)与点(1,k)做一条直线. 这条直线就是正比例函数y=kx(k≠0)的图象。 三、一次函数 1、一次函数的定义:一般地,形如y=kx+b(k

5、b是常数,k≠0)的函数,叫做一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数. 注意点①自变量x的次数是一次幂,且只含有x的一次项;②比例系数k≠0;③常数项可有可无。 2、一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移│b│个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 3、系数k的意义:k表征直线的倾斜程度,k值相同的直线相互平行,k不同的直线相交。 系数b的意义:b是直线与y轴交点的纵坐标。 当k>0时,直线y=kx+b从左向右上升,即随着x的增大y也增大。 当k<0时,直

6、线y=kx+b从左向右下降,即随着x的增大y反而减小。 直线y=kx+b与y轴的交点是点(0,b) 与x轴的交点是点(-b/k,0) 4、一次函数图像和解析式的系数之间的关系 5、画一次函数图像的最简单方法: (1)先选取两点,通常选出点(0,b)与点(-b/k,0); (2)在坐标平面内描出点(0,0)与点(1,k); (3)过点(0,b)与点(-b/k,0)做一条直线. 这条直线就是正比例函数y=kx(k≠0)的图象. 6、 待定系数法确定一次函数解析式:根据已知的自变量与函数的对应值,或函数图像直线上的点坐标。 步骤:①写出函数解析式的一般形式,其中包括未知的系数(

7、需要确定这些系数,因此叫做待定系数); ②把自变量与函数的对应值(可能是以函数图象上点的坐标的形式给出)即x、y的值代入函数解析式中,得到关于待定系数的方程或方程组.(有几个待定系数,就要有几个方程); ③解方程或方程组,求出待定系数的值,从而写出所求函数的解析式. 7、解析式与图像上点相互求解的题型 ①求解析式:解析式未知,但知道直线上两个点坐标,将点坐标看作x、y值代入解析式组成含有k、b两个未知数的方程组,求出k、b 的值在带回解析式中就求出解析式了。 ②求直线上点坐标:解析式已知,但点坐标只知道横纵坐标中得一个,将其代入解析式求出令一个坐标值即可。 四、一次函数与一元一次方

8、程 由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值y=0时,求相应的自变量x的值,从图象上看,这相当于已知直线y=ax+b,确定它与x轴交点的横坐标的值. 五、一次函数与一元一次不等式 由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值y大(小)于0时,求自变量x相应的取值范围. 用一次函数图象来解首先找到直线中满足y>(<)0的部分,然后判断这部分线的x的取值范围。 六、一次函数与二元一次方程(组) 1、解二元一次方程组可以看作求两个一次函数y=-3/5x+8/5与y=2x-1图象的交点坐标。 2、求两条直线的交点的方法:将两条直线的解析式组成方程组,求解方程组的x、y的值即为两直线交点坐标。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服