ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:659.01KB ,
资源ID:4325485      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4325485.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(导数常见题型归纳.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

导数常见题型归纳.doc

1、导数常见题型归纳一、常规应用与含参数的单调区间的讨论:1.设函数(1) 求函数的单调区间;21世纪教育网 (2) 若,求不等式的解集解: (1) , 由,得 .因为 当时,; 当时,; 当时,;所以的单调增区间是:; 单调减区间是: . 小结:此问是最基本的单调区间求解问题。(2) 由 , 得:. 故:当 时, 解集是:;当 时,解集是: ;当 时, 解集是:. 21世纪教育网 2.设函数.()若曲线在点处与直线相切,求的值;()求函数的单调区间与极值点.【解析】本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力(),曲线在点处与直线相切,(),当时,

2、函数在上单调递增,此时函数没有极值点.当时,由,当时,函数单调递增,当时,函数单调递减,当时,函数单调递增,此时是的极大值点,是的极小值点小结:此题是针对根的大小讨论单调区间。3.已知函数.()讨论函数的单调性;()若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.解()由题设知.令.当(i)a0时,若,则,所以在区间上是增函数;若,则,所以在区间上是减函数;若,则,所以在区间上是增函数;(i i)当a0时,若,则,所以在区间上是减函数;若,则,所以在区间上是增函数;若,则,所以在区间上是减函数.()由()的讨论及题设知,曲线上的两点A、B的纵坐标为函数的极

3、值,且函数在处分别是取得极值,.因为线段AB与x轴有公共点,所以.即.所以. 故.解得1a0或3a4.即所求实数a的取值范围是-1,0)3,4.答案应为a-1或3a4.即所求实数a的取值范围是3,4.小结:1、此题(1)问是针对根的大小讨论单调区间的,并且要注意参数正负对不等式解的影响。2、此题(2)问是利用极值点进行问题的转化的。4. 已知函数的图像过点(-1,-6),且函数的图像关于y轴对称。(1)求m,n的值及函数的单调区间;(2)若a0,求函数在区间内的极值。解:(1)由函数图像过(-1,-6),得m-n=-3,由,得:而图像关于y轴对称,所以:,即m=-3,所以n=0由得:所以,单调

4、递增区间为,递减区间为(2)由,得:x=0,x=2;所以函数在区间内有:当0a1时,有极大值为,无极小值; 当1a3时,有极小值为,无极大值; 当a3时,无极值。小结:此题第2问的解题关键是发现区间的长度刚好等于函数的两个极值点之间的距离,从而找到分类讨论的分类标准。二、问题转化型:5.设函数 (1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围 解:(1) , 因为, 即 恒成立, 所以 , 得,即的最大值为 (2) 因为 当时, ;当时, ;当时, ; 所以 当时,取极大值 ; 当时,取极小值 ; 故当 或时, 方程仅有一个实根. 解得 或.小结:此题把问题转

5、化成利用函数的极值点进行解决。6.已知函数(1)若图象上的点处的切线斜率为-4,求的极大值。(2)若在区间上是单调减函数,求a+b的最小值。略解:(1)易得a=-1,b=3由解得从而易用导数法求得极大值为(2)此问可用根的分布理论解决。由题意知的两根必需分布在区间外,从而由根的分布理论可得:,进而由线性规划解得小结:此题转化为用线性规划求最值。7. 设,是函数的两个极值点,且(1)若函数在点(0,0)处的切线与直线垂直,求a,b的值;(2)求的取值范围.解:(1),地的两个极值点,是的两个实根,又,.,通过分析符号关系进行形式转换是求解此问的关键,即,又函数在点(0,0)处的切线与直线垂直,解

6、得, ,.(2)由(1)知,可设,且由得,由得.在上单调递增,在上单调递减.,.小结:在第2问中使用了导数法求最值,从而求出了范围。8.已知为偶函数,曲线过点,()若曲线有斜率为0的切线,求实数的取值范围;()若当时函数取得极值,确定的单调区间解: ()为偶函数,故即有 解得又曲线过点,得有从而,曲线有斜率为0的切线,故有有实数解.即有实数解.此时有解得w.w.w.k.s.5.u.c.o.m 所以实数的取值范围:()因时函数取得极值,故有即,解得又 令,得当时, ,故在上为增函数当时, ,故在上为减函数当时, ,故在上为增函数9. 对于总有成立,则= 。【答案】4解法一:本小题考查函数单调性及

7、恒成立问题的综合运用,体现了分类讨论的数学思想。要使恒成立,只要在上恒成立。当时,所以,不符合题意,舍去。当时,即单调递减,舍去。当时 若时在和 上单调递增,在上单调递减。所以 当时在上单调递减,不符合题意,舍去。综上可知a=4.解法二:本小题考查函数单调性的综合运用若x0,则不论取何值,0显然成立;当x0 即时,0可化为,设,则, 所以 在区间上单调递增,在区间上单调递减,因此,从而4;当x0 即时,0可化为, 在区间上单调递增,因此,从而4,综上4【答案】4三、其它非常规套路题,发散思考型:已知二次函数的导函数的图像与直线平行,且在=1处取得最小值m1(m).设函数(1)若曲线上的点P到点Q(0,2)的距离的最小值为,求m的值(2) 如何取值时,函数存在零点,并求出零点.【解析】(1)设,则; 又的图像与直线平行 又在取极小值, , , ; , 设为上任意一点, 则 ;21世纪教育网 (2)由, 得 当时,方程有一解,函数有一零点; 当时,方程有二解,若, 函数有两个零点;若, ,函数有两个零点; 当时,方程有一解, , 函数有一零点 21世纪教育网 8

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服