ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:90.51KB ,
资源ID:4322300      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4322300.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(初一二元一次方程组的解法.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初一二元一次方程组的解法.doc

1、二元一次方程组的解法 考点名称:二元一次方程组的定义 · 二元一次方程组: 含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 把两个含有相同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。 二元一次方程组的解:一般的,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。 一般形式为:(其中a1,a2,b1,b2不同时为零). · · 二元一次方程组的特点: 1.组成二元一次方程组的两个一次方程不一定都是二元一次方程,但这两个方程必须一共含有两个未知数,如也是二元一次方程组。 2.在方程组的每个方程中,相同字母必须

2、代表同一未知量,否则不能将两个方程合在一起。 3.二元一次方程组中的各个方程应是整式方程。 4.二元一次方程组有时也由两个以上的方程组成。 · · 二元一次方程与二元一次方程组的区别: · · · 二元一次方程组的判定: ①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起. ②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解. · 考点名称:二元一次方程的定义 ·

3、 二元一次方程: 如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。 二元一次方程的一般形式:ax+by+c=0其中a、b不为零。 二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。 · · 二元一次方程的特点: 1.在方程中“元”是指未知数,“二元”是指方程中有且只有两个未知数。 2.未知数的项的次数是1,指的是含有未知数的项(单项式)的次数是1,如3xy的次数是2,所以方程3xy-2=0不是二元

4、一次方程。 3.二元一次方程的左边和右边都必须是整式,例如方程1/x-y=1的左边不是整式,所以她不是二元一次方程。 二元一次方程的解的特点: 1.二元一次方程的每个解都包括两个未知数的值,是一对数值,而不是一个数值,如x=7不是方程x+y=18的一个解,而才是方程x+y=18的一个解。 2.二元一次方程的解是具有相关性的一对未知数的值,二者相互制约,相互对应,不独立存在,当其中一个未知数的值确定以后,另一个未知数的值也确定了。 3.一般情况下,一个二元一次方程有无数个解,如方程x+y=18的解还可以是等等。 · · 二元一次方程的判定标准: 1.二元:有两个未知数

5、2.一次:未知数的系数为1 3.整式方程:分母不含未知数 · 考点名称:二元一次方程组的解法 二元一次方程组的解: 使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。 二元一次方程组解的情况: 一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况: 1、有一组解。如方程组: x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2、有无数组解。如方程组: x

6、y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。 3、无解。如方程组: x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解。 可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组: ax+by=c dx+ey=f 当a/d≠b/e 时,该方程组有一组解。 当a/d=b/e=c/f 时,该方程组有无数组解。 当a/d=b/e≠c/f 时,该方程组无解。 二元一次方程组的解法: 解方程的依据—等式性质

7、 1.a=b←→a+c=b+c 2.a=b←→ac=bc (c>0) 一、消元法 1)代入消元法 用代入消元法的一般步骤是: ①选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式; ②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程; ③解这个一元一次方程,求出 x 或 y 值; ④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数; ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

8、 例:解方程组 :      x+y=5① {      6x+13y=89② 解:由①得 x=5-y③ 把③代入②,得 6(5-y)+13y=89 即 y=59/7 把y=59/7代入③,得 x=5-59/7 即 x=-24/7 ∴ x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。 2)加减消元法 用加减法消元的一般步骤为: ①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数; ②在二元一次方程组中,若不存在①中

9、的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数), 再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程; ③解这个一元一次方程; ④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值; ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。 例:解方程组:      x+y=9① {      x-y=5② 解:①+② 2x=14 即 x=7 把x=7代入①,得 7+y=9 解,得:y=2 ∴ x=7 y=2 为方程组的解 利用等式的性质使方程组中两个方程中的某一个未知数前

10、的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。像这种解二元一次方程组的方法叫做加减消元法,简称加减法。 3)加减-代入混合使用的方法 例:解方程组:      13x+14y=41① {      14x+13y=40 ② 解:②-①得 x-y=-1 x=y-1 ③ 把③ 代入①得 13(y-1)+14y=41 13y-13+14y=41 27y=54 y=2 把y=2代入③得 x=1 所以:x=1,y=2 特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。 二、换元法 例:解方

11、程组:    (x+5)+(y-4)=8 {    (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为 m+n=8 m-n=4 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。 三、设参数法 例:解方程组:       x:y=1:4 {      5x+6y=29 令x=t,y=4t 方程2可写为:5t+6×4t=29 29t=29 t=1 所以x=1,y=4 四、图像法 二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像, 两条直线的交点坐标即二元一次方程组的解。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服