ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:35.98KB ,
资源ID:4312245      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4312245.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(现代数值计算方法公式总结.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

现代数值计算方法公式总结.doc

1、现代数值计算方法公式一、 插值法1.拉格朗日(Lagrange)插值法a)两点一次:L1x=x-x1x0-x1y0+x-x0x1-x0y1R1x=fx-L1x=f2!(x-x0)(x-x1) (x0x1)b)三点二次:L2x=x-x1x-x2x0-x1x0-x2y0+x-x0x-x2x1-x0x1-x2y1+x-x0x-x1x2-x0x2-x1y2R2x=fx-L2x=f33!(x-x0)(x-x1)(x-x2) (x0x2)2.牛顿(Newton)插值a)n次牛顿法多项式:Nnx=fx0+fx0,x1x-x0+fx0,x1,xnx-x0(x-xn-1)Rnx=fx-Nnx=fn+1n+1!n

2、+1x (x0xn)其中n+1x=x-x0x-x1(x-xn-1)XKF(XK)一阶差商二阶差商三阶差商四阶差商X0f(x0)fx0,x1fx1,x2fx2,x3fx3,x4fx0,x1,x2,x3fx1,x2,x3,x4X1f(x1)fx0,x1,x2X2f(x2)fx1,x2,x3fx0,x1,x2,x3,x4X3f(x3)fx2,x3,x4X4f(x4)fx0,x1=fx1-fx0x1-x0fx0,x1,x2=fx1,x2-fx0,x1x2-x0b)向前差分:Nnx0+th=y0+ty0+tt-1t-2(t-n+1)n!ny0Rnx0+th=tt-1t-2t-nn+1!hn+1fn+1

3、(x0xn)XKYKYI2YI3YI4YIX0y0y0y1y2y33y03y1X1y12y0X2y22y14y0X3y32y2X4y4yi=YI+1-YI2yi=YI+1-YI下减上c)向后差分:Nnxn+th=yn+tyn+tt+1(t+n-1)n!nynRnxn+th=tt+1t+2t+nn+1!hn+1fn+1 (x0xn)XKYKYI2YI3YI4YIX4y4y4y3y2y13y43y3X3y32y4X2y22y34y4X1y12y2X0y0yi=yi-yi-12yi=yi-yi-1上减下3.三次埃米尔特(Hermite)插值XX0X1YY0Y0YM0M1H3X=A0XY0+A1XY1

4、+0XM0+1(X)M1A0X=(1+2X-X0X1-X0)(X-X1X0-X1)2A1X=(1+2X-X1X0-X1)(X-X0X1-X0)20X=(X-X0)(X-X1X0-X1)21X=(X-X1)(X-X0X1-X0)2R3X=F44!(X-X0)2(X-X1)2 (x0x1)二、 拟合曲线(最小二乘)x=a0+a1x+a2x2Sa0,a1,a2=i=1nxi-yi2=i=1n(a0+a1xi+a2xi2)-yi2Sa0=0Sa1=0Sa2=0三、 数值积分1. 牛顿-柯特思(Newton-Cotes)公式梯形求积公式(2节点)IT1=b-a2fa-f(b)RT1=-b-a312f()

5、复化梯形求积公式Ih2fa+2k=1n-1fxk+f(b)TnRTn=-b-a12fh2=O(h2)辛普生求积公式(3节点)IS1=b-a6fa+4fa+b2+fbRS1=-b-a52880f4()复化辛普生求积公式Ih6fa+4k=0n-1fxk+12+2k=1n-1fxk+f(b)RSn=-b-a2880h4f4=O(h4)2. 高斯(Gauss)公式高斯-勒让德求积公式1. 先用勒让德公式求解xiLnx=12nn!dndxn(x2-1)n2. 利用“高斯积分公式具有2n+1次代数精度”将xi带入求Ai3. 将xi、Ai带入公式求取积分、并计算误差。-11fxi=0nAifxiRnf=22

6、n+3n+1!42n+32n+2!3f2n+2()普通积分化标准形式:I=abfxdx积分区间a,b变换x=b-a2t-a+b2abfxdx=b-a2-11f(b-a2t+a+b2)dt3. 代数精度若求积公式对f(x)=1,x,x2,xm时精确成立,而对f(x)=xm+1时不成立,则称此求积公式具有m次代数精确度四、 解线性代数方程组的直接方法三角形分解法求解Ax=b,先将A分解为A=LU,则原式变为Ux=y,那么问题就变为了求解Ly=bUx=y五、 解线性代数方程的迭代法1. 范数向量范数定义:设 xRn(or Cn) 其中R为实数域、C为复数域,若某实值函数N(x)|x|满足条件1) 非

7、负性|x|0,|x|=0当且仅当x=0成立2) 其次行ax=a |x|3) 三角不等式x+yx+|y|称N(x)|x|为Rn(or Cn)域上的一个向量范数常见范数:|x|=max1in|xi|x|1=i=1n|xi|x|2=i=1n|xi|21/2矩阵范数定义:设 ARnn(or Cnn) 其中R为实数域、C为复数域,若某实值函数N(A)|A|满足条件1) 非负性|A|0,|A|=0当且仅当A=0成立2) 其次行aA=a |A|3) 三角不等式A+BA+|B|4) 乘积性质ABA B称N(A)|A|为Rnn(or Cnn)域上的一个矩阵范数常见范数:|A|=max1inj=1naij(行范数

8、)|A|1=max1jni=1naij(列范数)|A|2=1,1为ATA的最大按模特征值|A|F=i,j=1naij21/22. 谱半径A=max1in|i|3. 雅可比迭代向量:用第i个方程解出xi的方程,分量通式如下:xik+1=1aii(bi-j=1jinaijxj(k)矩阵:对于Ax=b,先将A拆分成对角线矩阵D减去下三角矩阵L,再减去上三角矩阵U。xk+1=BJxk+fJ其中BJ=D-1L+U,fJ=D-1b4. 高斯-塞德尔迭代向量:用第i个方程解出xi的方程,并将上式得到的xi(k+1)带入下边的公式,分量通式如下:xik+1=1aii(bi-j=1i-1aijxj(k+1)-j

9、=i+1naijxj(k)矩阵:对于Ax=b,先将A拆分成对角线矩阵D减去下三角矩阵L,再减去上三角矩阵U。xk+1=BSxk+fS其中BS=(D-L)-1U,fS=(D-L)-1b5. 松弛迭代雅可比松弛(JOR):x(k+1)=I-D-1Axk+D-1b注:当02i时,收敛雅可比方法收敛时,01收敛逐次超松弛(SOR):xik+1=aii(bi-j=1i-1aijxj(k+1)-j=i+1naijxj(k)注:系数矩阵A对称正定,02时收敛六、 方程求根1. 大范围收敛定理a) j(x)在a,b上连续;b) 当xa,b时,j(x) a,b;c) j(x)存在,且对任意xa,b有|(x)|L

10、12. 牛顿迭代法xk+1=xk-f(xk)f(xk)牛顿下山法xk+1=xk-fxkfxk,其中13. 割线法xk+1=xk-xk-xk-1fxk-fxk-1fxk七、 矩阵特征问题求解1. 规范化乘幂法y(k)=xk/max(x(k)x(k+1)=Ay(k)2. 原点位移乘幂法取一个l0,用B=A-I*l0替代A,则得到的特征值ui=li-l0,特征向量不变八、 常微分方程的数值解法1. 欧拉公式yn+1=yn+hf(xn,yn)yx0=y02. 向后欧拉公式yn+1=yn+hf(xn+1,yn+1)yx0=y03. 梯形公式yn+1=yn+h2fxn,yn+f(xn+1,yn+1)yx0=y04. 改进欧拉公式yn+1=yn+h2fxn,yn+f(xn+1,yn+hf(xn,yn)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服