ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:226.22KB ,
资源ID:4310587      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4310587.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(有理数知识总结.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

有理数知识总结.doc

1、有理数知识总结1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。2. 正数和负数 像+,+12,1.3,258等大于0的数(“+”通常不写)叫正数。像-5,-2.8,-等在正数前面加“”(读负)的数叫负数。【注】0既不是正数也不是负数。3. 有理数(1) 整数:正整数、零和负整数统称为整数。分数:正分数和负分数统称为分数。有理数:整数和分数统称为有理数。(2) 有理数分类1) 按有理数的定义分类 2)按正负分类 正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数 分数 负有理数 负分数 负分数【注】有限小数、无限循环小数也叫做分数

2、。4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。【注】1)数轴的三要素:原点、正方向、单位长度,缺一不可。 2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。(2)在数轴上比较有理数的大小 1)在数轴上表示的两个数,右边的数总比左边的数大。 2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。 5. 相反数(1)只有符号不同的两个数称互为相反数,如5与5互为相反数。 (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。(几何意义) (3)0的相反数是0。也只有0的相反数是它

3、的本身。 (4)相反数是表示两个数的相互关系,不能单独存在。(5)数a的相反数是a。(6)多重符号化简多重符号化简的结果是由“”号的个数决定的。如果“”号是奇数个,则结果为负; 如果是偶数个,则结果为正。可简写为“奇负偶正”。 6. 绝对值(1) 在数轴上表示数a的点与原点的距离,叫做数a的绝对值。(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零 (3) 绝对值的主要性质 一个数的绝对值是一个非负数,即a0,因此,在实数范围内,绝对值最小的数是零 (4) 两个相反数的绝对值相等。 (5) 运用绝对值比较有理数的大小 两个负数,绝对值大的反而小.(6) 比较两个负数

4、的方法步骤是:1)先分别求出两个负数的绝对值;2)比较这两个绝对值的大小;3)根据“两个负数,绝对值大的反而小”作出正确的判断 7. 有理数的加法(1) 有理数加法法则1)同号两数相加,取相同的符号,并把绝对值相加。2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3)互为相反数的两个数相加得零。4)一个数与0相加,仍得这个数。(2) 有理数加法的运算律加法交换律:abba加法结合律:(a+b)+c=a+(b+c)8. 有理数的减法减去一个数等于加上这个数的相反数。a-b=a+(-b)9. 有理数的加减混合运算(1)省略加号和的形式:在一个和式里,通常

5、把各个加数的括号和它前面的加号省略不写。例如:把-8+(+10)+(-6)+(-4)写成省略加号和的形式为-8+10-6-4。读作“负8,正10,负6,负4的和”也可读作“负8加10减6减4。(2)适当的应用加法运算律。10. 有理数的乘法(1)有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。(2)几个不等于零的数相乘,积的正负号由负因数的个数决定,当负号的个数为奇数时,积为负;当负号的个数为偶数时,积为正。 几个数相乘,有一个因数为零,积就为零。(3)乘法运算律乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法对加法的分配律:a(b+c)=ab

6、+ac11. 有理数的除法(1)倒数:乘积为1的两个数互为倒数。【注】0没有倒数。(2)有理数除法法则1:除以一个数等于乘以这个数的倒数。【注】0不能做除数。(3)有理数的除法法则2:两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不等于的数,都得零。12. 有理数的乘方(1)求几个相同因数积的运算,叫做乘方。 个(2)乘方的结果叫做幂,a叫做底数,n叫做指数。(3)有理数乘方法则:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何非0次幂都是零。13. 科学记数法(1)一般的,10的n次幂,在1的后面有n的0。(2)一个大于0的数就记成的形式。其中n是正整数

7、。像这样的记数法叫做科学记数法。14. 有理数的混合运算(1)先算乘方,再算乘除,最后算加减。(2)同级运算,按照从左至右的顺序进行。(3)如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。15. 近似数和有效数字(1)准确数:完全符合实际的数。(2)近似数:和准确数非常接近的数。近似数和准确数接近的程度叫做精确度。(3)一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确到的位数止,所有的数字都叫做这个数的有效数字。(4)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。【例题精讲】一、有理数“0”的作用:作用举例表示

8、数的性质0是自然数、是有理数、是整数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态表示冰点表示正数与负数的界点0非正非负,是一个中性数二、数轴与数的关系例1下列语句中正确的是()A.数轴上的点只能表示整数 B.数轴上的点只能表示分数C.数轴上的点只能表示有理数 D.所有有理数都可以用数轴上的点表示出来.三、相反数、倒数例2、已知a、b互为倒数,c、d互为相反数,且,那么的值为 。例3、知三个互不相等的有理数,即可以表示为1,a+b,a的形式,又可表示为0,b的形式,且x的绝对值为2,求的值四、绝对值例4、若+|2b+5|=0,计算2a-b的值. 例5、若,化简例6、a,b在数轴上的位

9、置如图(1)化简: 。(2)比较大小:;。【利用几何意义求解】例7、代数式的最小值为 。五、有理数的运算例8、(1); (2);六、科学记数法近似数及有效数字例9、用科学记数数表示:1305000000= ;1020= .例10、水星和太阳的平均距离约为57900000 km用科学记数法表示为 .例11、近似数3.5万精确到 位,有 个有效数字.例12、近似数0.4062精确到 位,有 个有效数字.例13、3.4030105保留两个有效数字是 ,精确到千位是 .9一、选择题(每小题3分,共30分)1.某粮店出售三种品牌的面粉,袋上分别标有质量为(250.1)kg、(250.2)kg 、(250

10、3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A. 0.8kg B. 0.6kg C. 0.5kg D . 0.4kg2、有理数a 等于它的倒数,则a2004是( ).最大的负数.最小的非负数 .绝对值最小的整数 .最小的正整数3、若,则的取值不可能是( ) A0 B.1 C.2 D.24、当2时, 的值为9,则当2时,的值是( ) A、23 B、17C、23 D、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1的规律报数,那么第2005名学生所报的数是( )A、1 B、2 C、3 D、46、若|a|=4,|b|=2,且|a+b|=a+b,

11、 那么a-b的值只能是( ).A.2 B. -2 C. 6 D.2或67、 x是任意有理数,则2|x|+x 的值( ).A.大于零 B. 不大于零 C. 小于零 D.不小于零8、观察这一列数:,, , ,,依此规律下一个数是( )A. B. C. D.9、若表示一个整数,则整数x可取值共有( ).A.3个 B.4个 C.5个 D.6个10、等于( )A B C D二、填空题(每小题4分,共32分)11.请将3,4,6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_ ;12. (3)2013( )2014= ;13.若|x-y+3|+=0,则= . 14.北

12、京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设为有理数,则由 构成的各种数值是 16.设有理数a,b,c在数轴上的对应点如图所示,则 b-a+a+c+c-b= ;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+100”表示为,这里“”是求和符号,例如“1+3+5+7+9+99”(即从1开始的100以内的连续奇数的和)可表示为又如“”可表示为,同学们,通过以上材料的阅读,请解答下列

13、问题:(1)2+4+6+8+10+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:= (填写最后的计算结果)。三、解答题(共38分)19、计算:(4分)20、计算: (4分)21、已知,求的值 (7分)22、(7分)阅读并解答问题求的值,解:可令S,则2S ,因此2S-S,所以仿照以上推理计算出的值23. (8分)三个互不相等的有理数,既可以表示为1,的形式,也可以表示为0,的形式,试求的值24、(8分)电子跳蚤落在数轴上的某点K0,第一步从K0向左跳1个单位到K1,第二步由K1向右跳2个单位到K2,第三步由K2向左跳3个单位到K3,第四步由K3跳4个单位到K4,按以上规律跳了100步时,电子跳蚤落在数轴上的点K100所表示的数恰是20,试求电子跳蚤的初始位置K0点所表示的数。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服