ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:49.01KB ,
资源ID:4308467      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4308467.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2017六年级数学上册各单元重要知识点汇总.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2017六年级数学上册各单元重要知识点汇总.doc

1、2017六年级数学上册各单元重要知识点汇总2017六年级数学上册各单元重要知识点汇总 第一单元位置 用数对确定点的位置,如(3,5)表示:(第三列,第五行) 几列几行 竖排叫列横排叫行 一般(从左往右看)(从前往后看) 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 图形左、右平移:行不变图形上、下平移:列不变 第二单元分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 5表示求5个 的和是多少? 也表示 的5倍是多少? 5 表示求5的 是多少 2、分数乘分数是求一个数的几分之几是多少。 例如: 表示求

2、 的 是多少? (二)分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四

3、)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律:ab=ba 乘法结合律:=a 乘法分配律:(a+b)=a+b 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。 2、找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面 3、求一个数的几倍:一个数几倍;求一个数的几分之几是多少:一个数 。 4、写数量关系式技巧: (1)“的”相当于“”“占”、“是”、“比”相当于“=” (

4、2)分率前是“的”:单位“1”的量分率=分率对应量 (3)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量 三、倒数 1、倒数的意义:乘积是1的两个数互为倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数:把小数化为分数,再求倒数。 3、1的倒数是1;0没有倒数。因为11=1;0乘任何数都得0, (分母不能为0)

5、4、对于任意数 ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 第三单元分数除法 一、分数除法 1、分数除法的意义: 乘法:因数因数=积除法:积一个因数=另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。 4、“ ”叫做中括号。一个算式里,如

6、果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”:单位“1”的量分率=分率对应量 (2)分率前是“多或少”的意思:单位“1”的量(1分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程:根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法):对应量对应分率=单位“1”的量 3、求一个数是另一个数的几分之几:就一个数另一个数 4、求一个数比另一个数多(少)几分之几:两个数的相差量

7、单位“1”的量或: 求多几分之几:大数小数1 求少几分之几:1-小数大数 三、比和比的应用 (一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0 例如15:10=1510= (比值通常用分数表示,也可以用小数或整数表示) 前项比号后项比值 3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程速度=时间。 4、求比值的方法:用比的前项除以比的后项。 5、区分比和比值 比:表示两个

8、数的倍数关系,可以写成比的形式,也可以用分数表示。有比的前项和比的后项 比值:相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。 6、根据分数与除法的关系,两个数的比也可以写成分数形式。例如3:2也可以写成,仍读作“3:2”。 7、比和除法、分数的联系: 比前项比号“:”后项比值除法被除数除号“”除数商分数分子分数线“”分母分数值 8、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。 9、根据比与除法、分数的关系,可以理解比的后项不能为0。 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (二)、比的基本性质 1、根据比、

9、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数,比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、根据比的基本性质,可以把比化成最简单的整数比。 4化简比: (1)依据比的基本性 用比的前项和后项同时除以它们的最大公因数。 两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 两个小数的比:向右移动小数点的位置,先化成整数比再化简。 (2)用求比值的方法。

10、如:1510=1510=32 5按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 如:已知两个量之比为,则设这两个量分别为。 6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。 (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3) (三)和比的应用题有关的概念 1、求每份数的方法 和分数和=每份数相差数相差份数=每份数部分数对应份数=每份数 2、图形求比的常见公式 长方体:(长+宽+高)的和=棱长和4长方形:(长+宽)的和=周长2 3、相遇问题 速度和=路程相遇时间 第四单元圆 一

11、、认识圆 1、圆的定义:圆是由曲线围成的一种平面图形。 2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 一般用字母表示。它到圆上任意一点的距离都相等(画圆切忌别忘记标圆心0) 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。 4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。 直径是一个圆内最长的线段。 5、圆心确定圆的位置,半径确定圆的大小。(画圆给出半径标半径r=?,给出直径标直径d=?) 6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。 7在同

12、圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。 用字母表示为:d2r或r或r=d2 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。 折痕所在的这条直线叫做对称轴。 9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。 10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 有无数条对称轴的图形是:圆、圆环。 二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母表示。 2、圆周率实验: 在

13、圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。 发现一般规律,就是圆周长与它直径的比值是一个固定数()。圆的周长总是它直径的3倍多一些。 3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。 用字母(pai)表示。 (1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。 圆周率是一个无限不循环小数。在计算时,一般取314。 (2)在判断时,圆周长与它直径的比值是倍,而不是314倍。 (3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 4、圆的周长公式:=dd= 或=2rr=2 5、在一个正方形里画一个最大的圆,圆的直径等于正

14、方形的边长。 在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 6、区分周长的一半和半圆的周长: (1)周长的一半:等于圆的周长2计算方法:2r2即r (2)半圆的周长:等于圆的周长的一半加直径。计算方法:r2rrd 三、圆的面积 1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼

15、出的图形与圆的周长和半径的关系。 圆的半径=长方形的宽 圆的周长的一半=长方形的长 因为:长方形面积=长宽 所以:圆的面积=圆周长的一半圆的半径 S圆=rr=r2 圆的面积公式:S圆=r2r2=S 圆的面积公式:S=r22或S=r2 圆的面积公式:S=r24或S=r2 4、环形的面积:(环形的面积等于外圆面积与内圆面积的差) 一个环形,外圆的半径是R,内圆的半径是r。(Rr环的宽度) S环=R?2;?2;或 环形的面积公式:S环=(R?2;?2;)。 求环形的面积,一定要先想法分别求出外圆的半径(R)和内圆的半径(r) 再代入公式计算。一步一步的来,这样不容易错误。注意用公式S环=(R?2;?

16、2;) 计算时,要先算出2个平方数,再相减。切忌相减后再平方。 5、扇形的面积计算公式:S扇=r2(n表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 7、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。例如: 两个圆的半径比是23,那么这两个圆的直径比和周长比都是23,而面积比是49 8、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4 圆的周长是直径的倍,圆的周长与直径的比是:1 圆的周长是半径的2倍,圆的周长

17、与半径的比是2:1 9、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 10、周长计算公式: 知道半径求周长:=2r知道直径求周长:=d 已知周长:D=圆周长的一半:周长(曲线) 半圆的周长:周长+直径=r2r 面积计算公式:(无论是知道直径或者周长,都应该先求出半径,再求面积) 知道半径求面积:S=r2知道直径求面积:S=(d2)2 知道周长求面积:S=(2)2 11、确定起跑线: (1)每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。 (2)每条跑道直道的长度都相等,而各圆周长决定每条跑道

18、的总长度。(因此起跑线不同) (3)每相邻两个跑道相隔的距离是:2跑道的宽度 (4)当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加厘米。 12、常用各值结果: =314 2=628 3=942 5=157 6=1884 7=2198 9=2826 10=314 16=5024 36=11304 64=20096 96=30144 4=1268=251225=78 13、常用平方数结果 =121=144=169=196=225 =256=289=324=361 第五单元百分数 一、百分数的意义和写法 1、百分数的意义:表示一个数是另一个数的百分之几。 百分

19、数是指的两个数的比,因此也叫百分率或百分比。 百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。 2、千分数:表示一个数是另一个数的千分之几。 3、百分数和分数的主要联系与区别: (1)联系:都可以表示两个量的倍比关系。 (2)区别: 、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位; 分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。 、百分数的分子可以是整数,也可以是小数; 分数的分子不能是小数,只能是除0以外的自然数。 、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百

20、分之几,而只能读作“百分之几” 4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示。 二、百分数和分数、小数的互化 (一)百分数与小数的互化: 1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。 2百分数化成小数:把小数点向左移动两位,同时去掉百分号。 (二)百分数的和分数的互化 1、百分数化成分数: 先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。 2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 (三)常见

21、的分数与小数、百分数之间的互化 =0=50%=02=20%=0625=62% =025=25%=04=40%=0125=12% =075=75%=06=60%=0375=37% =00625=625%=08=80%=0875=87% =004=4=008=8=012=12=016=16 三、用百分数解决问题 (一)一般应用题 1、常见的百分率的计算方法: 合格率=发芽率= 出勤率= 达标率= 成活率= 出粉率= 烘干率= 含水率= 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在

22、30、40%。) 2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题: 数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”:单位“1”的量分率=分率对应量 (2)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量 3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。 解法:(建议:最好用方程解答) (1)方程:根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法):分率对应量对应分率=单位“1”的量 4、求一个数比另一个数多(少)百分之几的问题: 两个数的相差量单位“1”的量100%或: 求多百分之几:(大数小

23、数1)100% 求少百分之几:(1-小数大数)100% (二)、折扣 1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。 几折就表示十分之几,也就是百分之几十。例如八折=80,六折五=065=65 2、一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35% 几成”就是十分之几,也就是百分之几十。如:五成表示()% “折扣”表示某种商品降价的幅度。如:75折就表示现价是原价()% (三)、纳税 1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。 2、纳税的意义:税收是国家财政收入的主要之一。国家用收来的税款发展经济、科技、教育、文

24、化和国防安全等事业。 3、应纳税额:缴纳的税款叫做应纳税额。 4、税率:应纳税额与各种收入的比率叫做税率。 5、应纳税额的计算方法:应纳税额=总收入税率 (四)利息 1、存款分为活期、整存整取和零存整取等方法。 2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。 3、本金:存入银行的钱叫做本金。 4、利息:取款时银行多支付的钱叫做利息。 5、利率:利息与本金的比值叫做利率。 6、利息的计算公式:利息本金利率时间 7、注意:如要上利息税(国债和教育储藏的利息不纳税),则: 税后利息=利息-利息的应纳税额

25、=利息-利息利息税率=利息(1-利息税率) 8、本息=本金+利息 第六单元统计 一、扇形统计图的意义: 用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。 也就是各部分数量占总数的百分比(因此也叫百分比图)。 二、常用统计图的优点: 1、条形统计图:可以清楚的看出各种数量的多少。 2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。 三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。) 第七单元数学广角 一、“鸡兔同笼”问题的特点: 题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。 二、“鸡兔同笼”问题的解题方法 1、猜测法 2、假设法 (1)假如都是兔 (2)假如都是鸡 (3)古人“抬脚法”: 解答思路: 假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。关系式: 鸡兔总脚数2-鸡兔总数=兔的只数;鸡兔总数-兔的只数=鸡的只数。 102016全新精品资料-全新公文范文-全程指导写作 独家原创 / 10

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服