ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:458.96KB ,
资源ID:4308425      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4308425.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2019考研数学一真题及答案解析参考.pdf)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019考研数学一真题及答案解析参考.pdf

1、 http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ 2019 年考研数学一真题年考研数学一真题一、选择题,一、选择题,18 小题,每小题小题,每小题 4 分,共分,共 32 分分.下列每题给出的四个选项中,只有一个下列每题给出的四个选项中,只有一个选项是符合题目要求的选项是符合题目要求的.1.当时,若与是同阶无穷小,则0 xxxtankxkA.1.B.2.C.3.D.4.2.设函数则是的,0,ln,0,)(xxxxxxxf0 x)(xfA.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设是单调增加的有界

2、数列,则下列级数中收敛的是 nuA.B.1nnnunnnu1)1(1C.D.111nnnuu1221nnnuu4.设函数,如果对上半平面()内的任意有向光滑封闭曲线都2),(yxyxQ0yC有,那么函数可取为CdyyxQdxyxP0),(),(),(yxPA.B.32yxy321yxyC.D.yx11yx15.设是 3 阶实对称矩阵,是 3 阶单位矩阵.若,且,则二次型AEEAA224A的规范形为AxxTA.B.232221yyy232221yyyC.D.232221yyy232221yyy6.如图所示,有 3 张平面两两相交,交线相互平行,它们的方程 http:/承载梦想承载梦想 启航为来启

3、航为来 只为一次考上研只为一次考上研启航考研 http:/)3,2,1(321idzayaxaiiii组成的线性方程组的系数矩阵和增广矩阵分别记为,则AA,A.3)(,2)(ArArB.2)(,2)(ArArC.2)(,1)(ArArD.1)(,1)(ArAr7.设为随机事件,则的充分必要条件是BA,)()(BPAPA.).()()(BPAPBAPUB.).()()(BPAPABPC.).()(ABPBAPD.).()(BAPABP8.设随机变量与相互独立,且都服从正态分布,则XY),(2N1YXPA.与无关,而与有关.2B.与有关,而与无关.2C.与都有关.2,D.与都无关.2,2、填空题:

4、填空题:914 小题,每小题小题,每小题 4 分,共分,共 24 分分.9.设函数可导,则=.)(uf,)sin(sinxyxyfzyzcosyxzcosx1110.微分方程满足条件的特解 .0222yyy1)0(yy11.幂级数在内的和函数 .nnnxn0)!2()1()0,()(xS http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ 12.设为曲面的上侧,则=.)0(44222zzyxdxdyzxz224413.设为 3 阶矩阵.若 线性无关,且,则),(321A21,2132线性方程组的通解为 .0 xA14.设随机变量的概率密度为 为的

5、分布函数,X,其他,020,2)(xxxf)(xFX为的数学期望,则 .XX1XXFP)(3、解答题:解答题:1523 小题,共小题,共 94 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤.15.(本题满分 10 分)设函数是微分方程满足条件的特解.)(xy22xexyy0)0(y(1)求;)(xy(2)求曲线的凹凸区间及拐点.)(xyy 16.(本题满分 10 分)设为实数,函数在点(3,4)处的方向导数中,沿方向ba,222byaxz的方向导数最大,最大值为 10.jil43(1)求;ba,(2)求曲面()的面积.222byaxz0z17.求曲线与 x

6、 轴之间图形的面积.)0(sinxxeyx18.设,n=(0,1,2)dxxxann1021(1)证明数列单调减少,且(n=2,3)na221nnanna(2)求.1limnnnaa http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ 19.设是锥面与平面围成的锥体,求的形)10()1(2222zzyx0z心坐标.20.设向量组,为的一个基,TTTa)3,1(,)2,3,1(,)1,2,1(3213R在这个基下的坐标为.T)1,1,1(Tcb)1,((1)求.cba,(2)证明,为的一个基,并求到的过度矩阵.32,aa3R,32aa321,aaa

7、21.已知矩阵与相似20022122xAyB00010012(1)求.yx,(2)求可可逆矩阵,使得P.1BAPP22.设随机变量与相互独立,服从参数为 1 的指数分布,的概率分布为XYXY令),10(,11,1ppYPpYPXYZ(1)求的概率密度.z(2)为何值时,与不相关.pXZ(3)与是否相互独立?XZ23.(本题满分 11 分)设总体的概率密度为X,0,2)(),(222Axxuxexf其中是已知参数,是未知参数,是常数,来自总体的简0AnXXX,21X单随机样本.(1)求;A http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/(2)求

8、的最大似然估计量22019 年全国硕士研究生入学统一考试年全国硕士研究生入学统一考试数学试题解析(数学一)数学试题解析(数学一)1.C2.B3.D4.D5.C6.A7.C8.A9.yxxycoscos10.23xe11.xcos12.33213.为任意常数.,T)1,2,1(kk14.3215.解:(1),又,)()()(2222cxecdxeeexyxxdxxxdx0)0(y故,因此0c.)(221xxexy(2),22221221221)1(xxxexexey,222221221321221)3()3()1(2xxxxexxexxxexxey 令得0 y3,0 xx)3,(3)0,3(0)

9、3,0(3),3(y 000y凸拐点凹拐点凸拐点凹所以,曲线的凹区间为和,凸区间为和)(xyy)0,3(),3()3,(,拐点为,.)3,0()0,0()3,3(23e)3,3(23e http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ 16.解:(1),)2,2(byaxz grad)8,6()4,3(bazgrad由题设可得,即,又,4836baba 108622bazgrad所以,.1ba(2)=dxdyyzxzSyx22222)()(1dxdyyxyx22222)2()2(1=dxdyyxyx22222441dd202024120232)

10、41(1212.31317.18.http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ 19.由对称性,2,0yx=1021021010)1()1(dzzdzzzdxdydzdxdyzdzdvzdvzzzDD.4131121)1()1(102102dzzdzzz20.(1)即,123=bc11112311231bca 解得.322abc(2),所以,则23111111=331011231001,233r,可为的一个基.23,3R 12323=P,则.

11、1231231101=0121002P,21.(1)与相似,则,即,解得AB()()tr Atr BAB41482xyxy 32xy(2)的特征值与对应的特征向量分别为A,;,;,.1=211=202=122=103=231=24 http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ 所以存在,使得.1123=P,111212P AP 的特征值与对应的特征向量分别为B,;,;,.1=211=00 2=121=303=230=01 所以存在,使得.2123=P,122212PAP 所以,即112211=PAPP AP 1112112BP P APPP

12、AP其中.112111212004PPP 22.解:(I)的分布函数Z ,1,11F zP XYzP XYz YP XYz YpP Xzp P Xz 从而当时,;当时,0z zF zpe0z 1111zzF zppep e 则的概率密度为.Z,01,0zzpezf zp ez(II)由条件可得,又 22E XZE X E ZE XE YEX E YD X E Y,从而当时,即不相关.1,1 2D XE Yp 12p,0Cov X Z,X Z(III)由上知当时,相关,从而不独立;当时,12p,X Z12p 121111111111,2222222222112P XZP XXYP XXP XXF

13、e http:/承载梦想承载梦想 启航为来启航为来 只为一次考上研只为一次考上研启航考研 http:/ 而,显12112P Xe 121111112222222P ZP XP Xe 然,即不独立.从而不独立.1111,2222P XZP XP Z,X Z,X Z23.解:(I)由,令,则,2221xAedx2xt202212tAedtA从而.2A(II)构造似然函数,当22112212,1,2,0,niinxinAexinL x xxLL其他,1,2,ixinL时,取对数得,求导并令其22211lnlnln22niinLnAx为零,可得,解得的最大似然估计量为22241ln1022niidLnxd 2.211niixn

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服