ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:447.59KB ,
资源ID:4307942      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4307942.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(等比数列知识点总结.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

等比数列知识点总结.doc

1、等比数列知识梳理:1、等比数列的定义:,称为公比2、通项公式:,首项:;公比:推广:3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列是等比数列4、等比数列的前项和公式:(1)当时,(2)当时,(为常数)5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列(2)等比中项:为等比数列(3)通项公式:为等比数列6、等比数列的证明方法:依据定义:若或为等比数列7、等比数列的性质:(1)当时等比数列通项公式是关于的带有系数的类指数函数,底数为公比;前项和,系数和常数项是互为相反数的类指数

2、函数,底数为公比。(2)对任何,在等比数列中,有,特别的,当时,便得到等比数列的通项公式。因此,此公式比等比数列的通项公式更具有一般性。(3)若,则。特别的,当时,得 注:(4)数列,为等比数列,则数列,(为非零常数)均为等比数列。(5)数列为等比数列,每隔项取出一项仍为等比数列(6)如果是各项均为正数的等比数列,则数列是等差数列(7)若为等比数列,则数列,成等比数列(8)若为等比数列,则数列,成等比数列(9)当时, 当时,当时,该数列为常数列(此时数列也为等差数列);当时,该数列为摆动数列.(10)在等比数列中,当项数为时,二 例题解析【例1】 已知Sn是数列an的前n项和,Snpn(pR,

3、nN*),那么数列an( )A 是等比数列 B当p0时是等比数列B C当p0,p1时是等比数列 D不是等比数列【例2】 已知等比数列1,x1,x2,x2n,2,求x1x2x3x2n式;(2)已知a3a4a58,求a2a3a4a5a6的值【例4】 设a、b、c、d成等比数列,求证:(bc)2(ca)2(db)2(ad)2【例5】 求数列的通项公式:(1)an中,a12,an+13an2(2)an中,a1=2,a25,且an+23an+12an0三 考点分析考点一:等比数列定义的应用1、数列满足,则_2、在数列中,若,则该数列的通项_考点二:等比中项的应用1、已知等差数列的公差为,若,成等比数列,

4、则( )A B C D2、若、成等比数列,则函数的图象与轴交点的个数为( )AB CD不确定3、已知数列为等比数列,求的通项公式考点三:等比数列及其前n项和的基本运算1、若公比为的等比数列的首项为,末项为,则这个数列的项数是( )A B C D2、已知等比数列中,则该数列的通项_3、若为等比数列,且,则公比_4、设,成等比数列,其公比为,则的值为( )AB C D5、等比数列an中,公比q=且a2+a4+a100=30,则a1+a2+a100=_.考点四:等比数列及其前n项和性质的应用1、在等比数列中,如果,那么为( )A B C D2、如果,成等比数列,那么( )A,B,C, D,3、在等比

5、数列中,则等于( )ABCD4、在等比数列中,则等于( )A B C D5、在等比数列中,和是二次方程的两个根,则的值为( )ABCD6、若是等比数列,且,若,那么的值等于 考点五:公式的应用1、若数列的前n项和Sn=a1+a2+an,满足条件log2Sn=n,那么an是( )A.公比为2的等比数列 B.公比为的等比数列C.公差为2的等差数列 D.既不是等差数列也不是等比数列2、 等比数列前n项和Sn=2n-1,则前n项的平方和为( )A. (2n-1)2 B.(2n-1)2 C.4n-1 D.(4n-1)3、 设等比数列an的前n项和为Sn=3n+r,那么r的值为_.4、设数列an的前n项和为Sn且S1=3,若对任意的nN*都有Sn=2an-3n.(1)求数列an的首项及递推关系式an+1=f(an);(2)求an的通项公式;(3)求数列an的前n项和Sn.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服