ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:267.01KB ,
资源ID:4306295      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4306295.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2017年全国二卷理科数学高考真题及答案解析.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2017年全国二卷理科数学高考真题及答案解析.doc

1、WORD格式整理2016年全国高考理科数学试题全国卷2一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知z=(m+3)+(m1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A(3,1) B(1,3) C(1,+) D(,3)2、已知集合A=1,2,3,B=x|(x+1)(x2)0)的直线交E于A,M两点,点N在E上,MANA(1)当t=4,|AM|=|AN|时,求AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围21、(本小题满分12分)(1)讨论函数f(x)=ex的单调性,并证明当x0时,(x2)ex+x+20; (2

2、)证明:当a0,1)时,函数g(x)=(x0)有最小值。设g(x)的最小值为h(a),求函数h(a)的值域请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22、(本小题满分10分)选修41:几何证明选讲如图,在正方形ABCD中,E、G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F(1) 证明:B,C,G,F四点共圆;(2)若AB=1,E为DA的中点,求四边形BCGF的面积23、(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25(1)以坐标原点为极点,x轴正半轴为极轴建

3、立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率24、(本小题满分10分)选修45:不等式选讲已知函数f(x)=|x|+|x+|,M为不等式f(x)2的解集(1)求M;(2)证明:当a,bM时,|a+b|0,m10,3m1,故选A2、解析:B=x|(x+1)(x2)0,xZ=x|1x2,xZ,B=0,1,AB=0,1,2,3,故选C3、解析: 向量a+b=(4,m2),(a+b)b,(a+b)b=102(m2)=0,解得m=8,故选D4、解析:圆x2+y22x8y+13=0化为标准方程为:(x1)2+(y4)2=4,故圆心为(1,

4、4),d=1,解得a=,故选A5、解析一:EF有6种走法,FG有3种走法,由乘法原理知,共63=18种走法,故选B解析二:由题意,小明从街道的E处出发到F处最短有C条路,再从F处到G处最短共有C条路,则小明到老年公寓可以选择的最短路径条数为CC=18条,故选B。6、解析:几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h由图得r=2,c=2r=4,由勾股定理得:l=4,S表=r2+ch+cl=4+16+8=28,故选C7、解析:由题意,将函数y=2sin2x的图像向左平移个单位得y=2sin2(x+)=2sin(2x+),则平移后函数的对称轴为2x+=+k,

5、kZ,即x=+,kZ,故选B。8、解析:第一次运算:s=02+2=2,第二次运算:s=22+2=6,第三次运算:s=62+5=17,故选C9、解析:cos()=,sin2=cos(2)=2cos2()1=,故选D解法二:对cos()=展开后直接平方解法三:换元法10、解析:由题意得:(xi,yi)(i=1,2,3,.,n)在如图所示方格中,而平方和小于1的点均在如图的阴影中由几何概型概率计算公式知=,=,故选C11、解析: 离心率e=,由正弦定理得e=故选A12、解析:由f(x)=2f(x)得f(x)关于(0,1)对称,而y=1+也关于(0,1)对称,对于每一组对称点xi+xi=0,yi+yi

6、=2,故选B13、解析:cosA=,cosC=,sinA=,sinC=,sinB=sin(A+C)=sinAcosC+cosAsinC=,由正弦定理:=,解得b=14、解析:对于,mn,m,n,则,的位置关系无法确定,故错误;对于,因为,所以过直线n作平面与平面相交于直线c,则nc,因为m,mc,mn,故正确;对于,由两个平面平行的性质可知正确;对于,由线面所成角的定义和等角定理可知其正确,故正确的有.15、解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足;若丙(1,3),则乙(2,3),甲(1,2)不满足;故甲(1,3),16、解析:y=lnx+2的切线为:

7、y=x+lnx1+1(设切点横坐标为x1)y=ln(x+1)的切线为:y=x+ln(x2+1),解得x1=,x2=。b=lnx1+1=1ln217、解析:(1)设an的公差为d,S7=7a4=28,a4=4,d=1,an=a1+(n1)d=nb1=lga1=lg1=0,b11=lga11=lg11=1,b101=lga101=lg101=2(2)记bn的前n项和为Tn,则T1000=b1+b2+.+b1000=lga1+lga2+.+lga1000当0lgan1时,n=1,2,.,9;当1lgan2时,n=10,11,.,99;当2lgan0,=,整理得(k1)(4k2k4)=0,4k2k+4

8、=0无实根,k=1所以AMN的面积为|AM|2=()2=(2)直线AM的方程为y=k(x+),联立椭圆E和直线AM方程并整理得,(3+tk2)x2+2tk2x+t2k23t=0。解得x=或x=,|AM|=|+|=,|AN|=2|AM|=|AN|,2=,整理得,t=椭圆E的焦点在x轴,t3,即3,整理得0,解得k0,f(x)在(,2)和(2,+)上单调递增。x0时,exf(0)=1,(x2)ex+x+20。(2)g(x)=,a0,1)。 由(1)知,当x0时,f(x)=ex的值域为(1,+),只有一解使得et=a,t(0,2。 当x(0,t)时g(x)0,g(x)单调增h(a)=。记k(t)=,

9、在t(0,2时,k(t)=0,k(t)单调递增,h(a)=k(t)(,22、解析:(1)证明:DFCE,RtDEFRtCED,GDF=DEF=BCF,=。DE=DG,CD=BC,=。GDFBCF,CFB=DFG。GFB=GFC+CFB=GFC+DFG=DFC=90,GFB+GCB=180B,C,G,F四点共圆(2)E为AD中点,AB=1,DG=CG=DE=,在RtGFC中,GF=GC,连接GB,RtBCGRtBFG,S四边形BCGF=2SBCG=21=23、解:(1)整理圆的方程得x2+y2+12x+11=0,由2=x2+y2、cos=x、sin=y可知圆C的极坐标方程为2+12cos+11=

10、0(2)记直线的斜率为k,则直线的方程为kxy=0,由垂径定理及点到直线距离公式知:=,即=,整理得k2=,则k=24、解析:(1)当x时,f(x)=xx=2x,若1x;当x时,f(x)=x+x+=1时,f(x)=2x,若f(x)2,x1综上可得,M=x|1x0,即a2b2+1a2+b2,则a2b2+2ab+1a2+2ab+b2,则(ab+1)2(a+b)2,即|a+b|ab+1|,证毕每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济效益或者其他积极效果,呈报总经办。总经办应将实施完毕的建议案提交给评委会进行效果评估,确定奖励登记,对符合条件的项目,应整理材料,上报总经理审批后给建议人颁发奖励。总经办应做好合理化建议的统计记录及资料归档管理。 专业技术参考资料

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服