ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:207.01KB ,
资源ID:4303326      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4303326.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(概率论与数理统计(理工类-第四版)吴赣昌主编课后习题答案第二章.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

概率论与数理统计(理工类-第四版)吴赣昌主编课后习题答案第二章.doc

1、第二章 随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:随机变量是定义在样本空间上的一个实值函数.随机变量的取值是随机的,事先或试验前不知道取哪个值.随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值

2、的概率.解答:分别用1,2,3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S=1,2,3,定义随机变量X如下:X=X()=0,=11,=2,2,=3则X取每个值的概率为PX=0=P取出球的号码小于5=5/10,PX=1=P取出球的号码等于5=1/10,PX=2=P取出球的号码大于5=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为的泊松分布,且PX=1=PX=2,求.解答:由PX=1=PX=2,得e-=22e-,解得 =2.习题2设随机变量X的分布律为PX=k=k15,k=1,2,3,4,5,试求(1)P12X3.解答:(1)P12X3=PX=4+P

3、X=5=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算PX1X0.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得 c=3716=2.3125.由条件概率知PX1X0=PX60,即PX20,PX20=PX=30+PX=40=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1,当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布; (2)PX5;(3

4、)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)PX=k=(1-p)kp=(0.9)k0.1,k=0,1,2,;(2)PX5=k=5PX=k=k=5(0.9)k0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足PXm=0.6,即PXm-1=0.4. 由于PXm-1=k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m4.855,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投

5、篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=PX=0=1-0.6=0.4,X=1表示投中一次,其概率为 p2=PX=1=0.6.则随机变量的分布律为X01P0.40.6习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3.对应概率分布为PX=0=C73C103=35120,PX=1=C73C31C103=36120,PX=2=C71C32C103=21120,PX=3=C33C103=1120.X的分布律为X0123P35120361

6、20211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,k,.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为PX=k=310310310710=(310)k-1710,k=1,2,.习题10设随机变量Xb(2,p),Yb(3,p),若PX1=59,求PY1.解答:因为Xb(2,p),PX=0=(1-p)2=1-PX1=1-5/9=4/9,所以p=1/

7、3.因为Yb(3,p),所以 PY1=1-PY=0=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间内断头的概率为0.005,在这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P0X2=P0xi2X=xi=k=02b(k;800,0.005)k=02P(k;4)=e-4(1+41!+422!)0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:because

8、PX=1=PX=2,即11!e-=22!e-=2,PX=0=e-2,p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)=0,x-20.4,-2x01,x0,是随机变量X的分布函数,则X是_型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)=0x0x201,1x1问F(x)是否为某随机变量的分布函数.解答:首先,因为0F(x)1,x(-,+).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-)=0,F(+)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为

9、PX=1=0.3,PX=3=0.5,PX=5=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X135Pk0.30.50.2所以其分布函数F(x)=PXx=0,x10.3,1x30.8,3x51,x5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)=0,x-10.4,-1x10.8,1x31,x3,试求:(1)X的概率分布;(2)PX2X1.解答:(1)X-113pk0.40.40.2(2)PX2X1=PX=-1PX1=23.习题5设X的分布函数为F(x)=0,x0x2,0x1x-12,1x1.51,x1.5,求P0.40.5,P1.7X2.解答:

10、P0.40.5=1-PX0.5=1-F(0.5)=1-0.5/2=0.75,P1.7X2=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-x+),试求:(1)系数A与B;(2)X落在(-1,1内的概率.解答:(1)由于F(-)=0,F(+)=1,可知A+B(-2)A+B(2)=1=0A=12,B=1,于是 F(x)=12+1arctanx,-x+;(2)P-1X1=F(1)-F(-1)=(12+1arctan1)-12+1arctanx(-1)=12+14-12-1(-4)=12.习题7在区间0,a上任意投掷一个质点,以X表示这个质点的坐标.

11、设这个质点落在0,a中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=PXx=0,x0xa,0xa.1,xa2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12e-(x+3)24(-x+),则Y=N(0,1).解答:应填3+X2.由正态分布的概率密度知=-3,=2由Y=X-N(0,1),所以Y=3+X2N(0,1).习题2已知Xf(x)=2x,0x10,其它,求PX0.5;PX=0.5;F(x).解答:PX0.5=-0.5f(x)dx=-00dx+00.52xdx=x200.5=0.25,PX=0.5=PX0.5-PX0.5=-0.5f

12、(x)dx-0.5f(x)dx=0.当X0时,F(x)=0;当0x1时,F(x)=-xf(t)dt=-00dt+0x2tdt=t20x=x2;当X1时,F(x)=-xf(t)dt=-00dt+0x2tdt+1x0dt=t201=1,故F(x)=0,x0x2,0x00,x0,试求:(1)A,B的值;(2)P-1X1;(3)概率密度函数F(x).解答:(1)becauseF(+)=limx+(A+Be-2x)=1,A=1;又becauselimx0+(A+Be-2x)=F(0)=0, B=-1.(2)P-1X00,x0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-x,求系数A及分布

13、函数F(x).解答:由概率密度函数的性质知,-+f(x)dx=1,即 -+Ae-xdx=1,而-+Ae-xdx=-0Aexdx+0+Ae-xdx=Aex-0+(-Ae-x0+)=A+A=2A或-+Ae-xdx=20+Ae-xdx=-2Ae-x0+=2A,所以2A=1,即A=1/2.从而f(x)=12e-x,-x+,又因为F(x)=-xf(t)dt,所以当x0时,F(x)=-x12e-tdt=12-xetdt=12et-x=12ex;当x0时,F(x)=-x12e-xdt=-012etdt+0x12e-tdt=12et-0-12e-t0x=12-12e-x+12=1-12e-x,从而F(x)=1

14、2ex,x150=150+f(x)dx=150+100x2dx =-100x150+=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从0,5上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型.Y服从二项分布,其参数 n=10,p=PX4=15=0.2,所以 PY=1=C1010

15、.20.890.268.习题7设XN(3,22).(1)确定C,使得PXc=PXc;(2)设d满足PXd0.9,问d至多为多少?解答:因为XN(3,22),所以X-32=ZN(0,1).(1)欲使PXc=PXc,必有1-PXc=PXc,即 PXc=1/2,亦即(c-32)=12,所以 c-3=0,故c=3.(2)由PXd0.9可得1-PXd0.9,即 PXd0.1.于是(d-32)0.1,(3-d2)0.9.查表得3-d21.282,所以d0.436.习题8设测量误差XN(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.

16、6的概率p,p=PX19.6=1-PX19.6=1-PX101.96=1-(1.96)-(-1.96) =1-2(1.96)-1=1-20.975-1=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Yb(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=,所以PY31-50e-50!-51e-51!-52e-52!=1-3722-50.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产

17、品才能获奖?解答:用X表示工人每月需装配的产品数,则XN(4000,3600).设工人每月需完成x件产品才能获奖,依题意得PXx=0.1,即 1-PXx=0.1,所以1-F(x)=0.1,即1-(x-400060)=0.1,所以 (x-400060)=0.9.查标准正态人分布表得(1.28)=0.8997,因此 x-4000601.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求PX105,P100x0.005.解答:已知血压XN

18、(110,122).(1)PX105=PX-11012-5121-(0.42)=0.3372,P100x0.05,求x,即1-PXx0.05,亦即 (x-11012)0.95,查表得x-100121.645,从而x129.74.习题11设某城市男子身高XN(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:XN(170,36),则X-1706N(0,1).设公共汽车门的高度为xcm,由题意PXxx=1-PXx=1-(x-1706)0.99,查标准正态表得x-17062.33,故x183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会

19、小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则XN(40,102),YN(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为PX60=(60-4010)=(2)=0.97725,PY60=(60-504)=(2.5)=0.99379,

20、所以有60分钟时应走第二条路.(2)因为PX45=(45-4010)=(0.5)=0.6915,PX0时,fY(y)=1c(b-a),ca+dycb+d0,其它,当c0时,fY(y)=-1c(b-a),cb+dyca+d0,其它.习题4设随机变量X服从0,1上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)=1,0x10,其它,f=ex,x(0,1)是单调可导函数,y(1,e),其反函数为x=lny,可得f(x)=fX(lny)lny,1ye0,其它=1y,1y1时)=P-y-12Xy-12=-y-12y-1212e-x2dx,所以fY(y)=FY(y)=22e-12y-

21、12122y-1,y1,于是fY(y)=12(y-1)e-y-14,y10,y1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=X.解答:(1)FY(y)=PYy=P1/Xy.当y0时,FY(y)=P1/X0+P01/Xy=PX0+PX1/y=F(0)+1-F(1/y),故这时fY(y)=-F(1y)=1y2f(1y);;当y0时,FY(y)=P1/yX0=F(0)-F(1/y),故这时fY(y)=1y2f(1y);当y=0时,FY(y)=P1/X0=PX0时,FY(y)=P-yXy=F(y)-F(-y)这时fY(y)=

22、f(y)+f(-y);当y00,y0.习题7某物体的温度T(F)是一个随机变量, 且有TN(98.6,2),已知=5(T-32)/9,试求(F)的概率密度.解答:已知TN(98.6,2).=59(T-32),反函数为T=59+32,是单调函数,所以f(y)=fT(95y+32)95=122e-(95y+32-98.6)2495 =910e-81100(y-37)2.习题8设随机变量X在任一区间a,b上的概率均大于0,其分布函数为FY(x),又Y在0,1上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间a,b上的概率均大于0,故FX(x)是单调增加函数

23、,其反函数FX-1(y)存在,又Y在0,1上服从均匀分布,故Y的分布函数为FY(y)=PYy=0,y0,于是,Z的分布函数为FZ(z)=PZz=PFX-1(Y)z=PYFX(z)=0,FX(z)1由于FX(z)为X的分布函数,故0FX(z)1.FX(z)1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同.总习题解答习题1从120的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,20.因为P(K=120Ak)=k=120P(Ak)=ck=120k=1,所以c=1210,P取到偶数=PA2A4A20 =

24、1210(2+4+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)PX=3=C103(0.7)3(0.3)70.009;(2)PX3=1-PX300000即X15(人).因此,P保险公司亏本=PX15=k=162500C2500k(0.002)k(0.998)2500-k1-k=015e-55kk!0.000069,由此可见,在1年里保险公司亏本的概率

25、是很小的.(2)P保险公司获利不少于100000元=P300000-200000X100000=PX10=k=010C2500k(0.002)(0.998)2500-kk=010e-55kk!0.986305,即保险公司获利不少于100000元的概率在98%以上. P保险公司获利不少于200000元=P300000-200000X200000=PX5=k=05C2500k(0.002)k(0.998)2500-kk=05e-55kk!0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%,

26、 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X,300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然Xb(300,0.03),即PX=k=C300k(0.03)k(0.97)300-k(k=0,1,2,300),因n=300很大,p=0.03又很小, =np=3000.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故PX13k=0139kk!e-90.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数

27、k0=(n+1)p=3010.03=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,=3/2,PX=0=e-3/20.223;(2)t=5,=5/2,PX1=1-PX=0=1-e-5/20.918.习题6设X为一离散型随机变量,其分布律为X-101pi1/21-2qq2试求:(1)q的值;(2)X的分布函数.解答:(1)because离散型随机变量的概率函数PX=xi=pi,

28、满足ipi=1,且0pi1,1/2+1-2q+q2=101-2q1q21,解得q=1-1/2.从而X的分布律为下表所示:X-101pi1/22-13/2-2(2)由F(x)=PXx计算X的分布函数F(x)=0,1/2,2-1/2,1,x-1-1x00x0x1.习题7设随机变量X的分布函数F(x)为F(x)=0,x/2则A=,PX/6=.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(2+0)=F(2)A=1.因F(x)在x=6处连续,故PX=6=12,于是有PX6=P-6X6=P-60是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的

29、可能取值充满区间(0,+),故应分段求F(x)=PXx.当x0时,F(x)=PXx=P()=0;当x0时,由题设知PxXx+x/X=x+o(x),而PxXx+x/X=PxxPXx=Px0,0,故X的分布函数为F(x)=0,x01-e-x,x0(0),从而电子管在T小时内损坏的概率为PXT=F(T)=1-e-T.习题9设连续型随机变量X的分布密度为f(x)=x,0x12-x,1x20,其它,求其分布函数F(x).解答:当x0时,F(x)=-x0dt=0;当0x1时,F(x)=-xf(t)dt=-00tdt+0xtdt=12x2;当12时,F(x)=-00dt+01tdt+12(2-t)dt+2x0dt=1,故F(x)=0,x212x2,0x1-1+2x-x22,12.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)=19xe-x3,x00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x0时,F(x)=0,当x0时有

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服