ImageVerifierCode 换一换
格式:PPTX , 页数:22 ,大小:267.98KB ,
资源ID:4296368      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4296368.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(微分中值定理78534.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

微分中值定理78534.pptx

1、2024/9/4 周三1第一节第一节 微分中值定理微分中值定理二二 微分中值定理微分中值定理一一 问题的提出问题的提出1 费马(费马(Fermat)定理)定理2 罗尔罗尔(Rolle)定理定理3 拉格朗日拉格朗日(Lagrange)中值定理中值定理4 柯西柯西(Cauchy)中值定理中值定理三三 小结与思考判断题小结与思考判断题(The Mean Value Theorem)2024/9/4 周三2一一 问题的提出问题的提出(Introduction)我们知道,导数是刻划函数在一点处变化我们知道,导数是刻划函数在一点处变化率的数学模型,它反映的是函数在一点处的局率的数学模型,它反映的是函数在一

2、点处的局部变化性态,但在理论研究和实际应用中,常部变化性态,但在理论研究和实际应用中,常常需要把握函数在某区间上的整体变化性态,常需要把握函数在某区间上的整体变化性态,那么函数的整体变化性态与局部变化性态有何那么函数的整体变化性态与局部变化性态有何关系呢?中值定理正是对这一问题的理论诠释。关系呢?中值定理正是对这一问题的理论诠释。中值定理揭示了函数在某区间上的整体性质与该中值定理揭示了函数在某区间上的整体性质与该区间内部某一点的导数之间的关系。中值定理既区间内部某一点的导数之间的关系。中值定理既是利用微分学知识解决应用问题的数学模型,又是利用微分学知识解决应用问题的数学模型,又是解决微分学自身

3、发展的一种理论性数学模型。是解决微分学自身发展的一种理论性数学模型。2024/9/4 周三3二二 微分中值定理微分中值定理(The Mean Value Theorem)微分中值定理的核心是拉格朗日微分中值定理的核心是拉格朗日(Lagrange)中值定理,费马定理是它的预备定理,罗尔定理中值定理,费马定理是它的预备定理,罗尔定理是它的特例,柯西定理是它的推广。是它的特例,柯西定理是它的推广。1 预备定理预备定理费马(费马(Fermat)定理)定理 费马(费马(Fermat,1601-1665),法国人,与笛卡尔),法国人,与笛卡尔共同创立解析几何。因提出费马大、小定理而著于世。共同创立解析几何

4、因提出费马大、小定理而著于世。2024/9/4 周三4几何解释几何解释:2024/9/4 周三5证明证明:2024/9/4 周三6几何解释几何解释:2 罗尔(Rolle)定理(Rolles Theorem)2024/9/4 周三7证证2024/9/4 周三82024/9/4 周三9注注1:若罗尔定理的三个条件中有一个不满足若罗尔定理的三个条件中有一个不满足,其结其结论可能不成立论可能不成立.例如例如,例如例如,XY-110注注2:若罗尔定理的条件仅若罗尔定理的条件仅是充分条件,不是必要的是充分条件,不是必要的.2024/9/4 周三10例例1 12)唯一性)唯一性由零点定理由零点定理即为方程

5、的正实根即为方程的正实根.矛盾矛盾,证:证:1)存在性)存在性2024/9/4 周三113 拉格朗日(Lagrange)中值定理2024/9/4 周三12几何解释几何解释:证证分析分析:弦弦AB方程为方程为化化归归证证明明法法2024/9/4 周三13作辅助函数作辅助函数拉格朗日中值公式拉格朗日中值公式注意注意:拉氏公式精确地表达了函数在一个区间上的拉氏公式精确地表达了函数在一个区间上的增量与函数在这区间内某点处的导数之间的关系增量与函数在这区间内某点处的导数之间的关系.2024/9/4 周三14拉格朗日中值公式又称拉格朗日中值公式又称有限增量公式有限增量公式.推论推论1拉格朗日中值公式另外的

6、表达方式:拉格朗日中值公式另外的表达方式:2024/9/4 周三15例例2 2证证由上式得由上式得2024/9/4 周三164 柯西(Cauchy)中值定理2024/9/4 周三17几何解释几何解释:证证作辅助函数作辅助函数2024/9/4 周三182024/9/4 周三19例例4 42024/9/4 周三202024/9/4 周三21三三 小结与思考判断题小结与思考判断题Rolle定理定理Lagrange中值定理中值定理Cauchy中值定理中值定理1)罗尔定理、拉格朗日中值定理及柯西中值定)罗尔定理、拉格朗日中值定理及柯西中值定理之间的关系;理之间的关系;2)利用中值定理证明等式与不等式)利用中值定理证明等式与不等式.Fermat定理2024/9/4 周三22思考题思考题 1 拉格朗日中值定理的条件缺少一个,拉格朗日中值定理的条件缺少一个,结论就可能不成立结论就可能不成立.2

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服