ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.31MB ,
资源ID:4293554      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4293554.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2005-2017浙江高考理科数学历年真题之解析几何大题(教师版).doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2005-2017浙江高考理科数学历年真题之解析几何大题(教师版).doc

1、- - . - 浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴的长为4,左准线与x轴的交点为M,|MA1|A1F1|21 ()求椭圆的方程; ()若直线:xm(|m|1),P为上的动点,使最大的点P记为Q,求点Q的坐标(用m表示)解析:()设椭圆方程为,半焦距为,则,() 设,当时,;当时,只需求的最大值即可设直线的斜率,直线的斜率,当且仅当时,最大,2、(2006年)如图,椭圆1(ab0)与过点A(2,0)、B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=。()求椭圆方程;()设F、F分别为椭圆的左、右焦点,M为线段AF

2、2的中点,求证:ATM=AFT。解析:()过 A、B的直线方程为 因为由题意得有惟一解,即有惟一解,所以故=0又因为e,即 , 所以 从而得故所求的椭圆方程为()由()得,所以 ,从而M(1+,0)由 ,解得 因此因为,又,得,因此,3、(2007年)如图,直线与椭圆交于两点,记的面积为(I)求在,的条件下,的最大值;(II)当,时,求直线的方程解析:(I)设点的坐标为,点的坐标为由,解得所以,当且仅当时,S取到最大值1()解:由得AB 又因为O到AB的距离所以代入并整理,得,解得,代入式检验,0,故直线AB的方程是 或或或4、(2008年)已知曲线C是到点P()和到直线距离相等的点的轨迹。是

3、过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。 ()求曲线C的方程; ()求出直线的方程,使得为常数。解析:()设为上的点,则,到直线的距离为由题设得化简,得曲线的方程为()解法一:设,直线,则,从而ABOQyxlM在中,因为,所以 .,当时,从而所求直线方程为解法二:设,直线,则,从而过垂直于的直线ABOQyxlMHl1因为,所以,当时,从而所求直线方程为5、(2009年)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为 (I)求椭圆的方程; (II)设点在抛物线:上,在点处的切线与交于点当线段的中点与的中点的横坐标相等时,求的最小值OxyAPMN解析:()解:

4、由题意,得从而因此,所求的椭圆方程为()解:如图,设,则抛物线在点处的切线斜率为直线的方程为:将上式代入椭圆的方程中,得即 因为直线与椭圆有两个不同的交点,所以式中的 设线段的中点的横坐标是,则设线段的中点的横坐标是,则由题意,得,即 由式中的,得,或当时,则不等式不成立,所以当时,代入方程得,将代入不等式,检验成立所以,的最小值为16、(2010年)已知,直线椭圆 分别为椭圆C的左、右焦点. (I)当直线过右焦点F2时,求直线的方程; (II)设直线与椭圆C交于A,B两点,的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.解析:()解:因为直线经过,所以又因为所以故直

5、线的方程为 ()解:设,由消去得:则由,知且有由于故O为F1F2的中点,由,可知设M是GH的中点,则由题意可知,好即而所以即又因为所以所以的取值范围是(1,2)。 7、(2011年)已知抛物线,圆的圆心为点M。()求点M到抛物线的准线的距离;()已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂足于AB,求直线的方程.解析:8、(2012年)如图,椭圆的离心率为,其左焦点到点(,)的距离为,不过原点的直线与相交于,两点,且线段被直线平分。()求椭圆C的方程;()求面积取最大值时直线的方程。解析: 9、(2013年)如图,点是椭圆 的一个顶点,

6、的长轴是圆的直径,是过点且互相垂直的两条直线,其中交于两点,交于另一点.求椭圆的方程;求面积取最大值时直线的方程.(1)由题意得椭圆的方程为(2)设由题意知直线的斜率存在,不妨设其为,则直线的方程为故点到直线的距离为,又圆:,又,直线的方程为由,消去,整理得,故,代入的方程得设的面积为,则当且仅当,即时上式取等号。当时,的面积取得最大值,此时直线的方程为10、(2014年)如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.已知直线的斜率为,用表示点的坐标;若过原点的直线与垂直,证明:点到直线的距离的最大值为.(1)方法1:设直线l的方程为,由,消去y得由于直线l与椭圆C只有一个公共点P,

7、故=0,即,解得点P的坐标为又点P在第一象限,故点P的坐标为方法2:作变换,则椭圆C:变为圆:切点变为点,切线( 变为。在圆中设直线的方程为() ,由解得即,由于,所以,得,即代入得即,利用逆变换代入即得:(2)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离整理得:因为,所以当且仅当时等号成立。所以,点P到直线的距离的最大值为11、(2015年)已知椭圆=1上两个不同的点A, B关于直线y=mx+对称求实数m的取值范围;求AOB面积的最大值(O为坐标原点)解:(1)由题意,可设直线AB的方程为x=-my+n,代入椭圆方程,可得(m2+2)y2-2m

8、ny+n2-2=0,设A(x1,y1),B(x2,y2)由题意,=4m2n2-4(m2+2)(n2-2)=8(m2-n2+2)0,设线段AB的中点P(x0,y0),则x0=-m+n=,由于点P在直线y=mx+上,=+,代入0,可得3m4+4m2-40,解得m2,或m(2)直线AB与x轴交点横坐标为n,SOAB=|n|=,由均值不等式可得:n2(m2-n2+2)=,SAOB=,当且仅当n2=m2-n2+2,即2n2=m2+2,又,解得m=,当且仅当m=时,SAOB取得最大值为12、(2016年)如图,设椭圆.(1)求直线被椭圆截得的线段长(用、表示);(2)若任意以点为圆心的圆与椭圆至多有3个公

9、共点,求椭圆离心率的取值范围.I)设直线被椭圆截得的线段为,由得,故,因此(II)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,满足记直线,的斜率分别为,且,由(I)知,故,所以由于,得,因此, 因为式关于,的方程有解的充要条件是,所以因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,由得,所求离心率的取值范围为13、 (2017年)如图,已知抛物线x2=y,点A(-,),B(,),抛物线上的点p(x,y)(-x)过点B作直线AP的垂线,垂足为Q(1)求直线AP斜率的取值范围;(2)求|PA|PQ|的最大值解:(1)设直线AP的斜率为k,k=x-,因为-x,所以直

10、线AP斜率的取值范围是(-1,1)(2)联立直线AP与BQ的方程解得点Q的横坐标是xQ=因为|PA|=(x+)=(k+1),|PQ|=(xQ-x)=-,所以|PA|PQ|=-(k-1)(k+1)3令f(k)=-(k-1)(k+1)3,因为f(k)=-(4k-2)(k+1)2,所以f(k)在区间(-1,)上单调递增,(,1)上单调递减,因此当k=时,|PA|PQ|取得最大值宁可累死在路上,也不能闲死在家里!宁可去碰壁,也不能面壁。是狼就要练好牙,是羊就要练好腿。什么是奋斗?奋斗就是每天很难,可一年一年却越来越容易。不奋斗就是每天都很容易,可一年一年越来越难。能干的人,不在情绪上计较,只在做事上认真;无能的人!不在做事上认真,只在情绪上计较。拼一个春夏秋冬!赢一个无悔人生!早安!献给所有努力的人.word 可编辑.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服