ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:264.75KB ,
资源ID:4285739      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4285739.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2019部编版小学六年级数学上册知识点归纳汇总.pdf)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019部编版小学六年级数学上册知识点归纳汇总.pdf

1、1 2019 部编版小学六年级数学上册知识点归纳汇总2 温馨提示:同学们,一个学期的学习已经结束,你记住咱们本学期学习的东西了吗?让我们一起来回顾下我们这学期各单元重要知识点吧!最后,祝各位同学们在期末的考试里取得好成绩。第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:655 表示求 5 个 65的和是多少?1/3 5 表示求 5 个 1/3 的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。例如:1/3 4/7 表示求 1/3 的 4/7 是多少。43/8 表示求 4 的 3/8 是多少.(二)、分数乘

2、法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有 1111=121;1313=169;1717=289;1919=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。X|k|B|1.c|O|m(三)、乘法中比较大小的规律一个数(0 除外)乘大于 1 的数,积大于这个数。一个数(0 除外)乘小于 1

3、 的数(0 除外),积小于这个数。一个数(0 除外)乘 1,积等于这个数。(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律:a b=b a 乘法结合律:(a b)c=a (b c)乘法分配律:(a+b)c=a c+b c 二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。2、找单位“1”:单位“1”在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面

4、。3、写数量关系式的技巧:(1)“的”相当于“”,“占”、“相当于”“是”、“比”是“=”3(2)分率前是“的”字:用单位“1”的量分率=具体量例如:甲数是 20,甲数的 1/3 是多少?列式是:201/3 4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量(1-分率)=具体量;例如:甲数是 50,乙数比甲数少 1/2,乙数是多少?列式是:50(1-1/2)(比多):单位“1”的量(1+分率)=具体量例如:小红有 30 元钱,小明比小红多3/5,小红有多少钱?列式是:50(1+3/5)3、求一个数的几倍是多少:用一个数几倍;4、求一个数的几分之几是多少:用一个

5、数几分之几。5、求几个几分之几是多少:用几分之几个数6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量(1-分率)=另一个部分量(建议用)(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量例如:教材 15 页做一做和 16 页练习第七题(题目中有时候会有这种题的关键字“其中”)w W w .b 1.c O m第二单元位置与方向(二)一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。三、位置关系的相对性:1、两地的位置具有相对性在

6、叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。四、相对位置:东-西;南-北;南偏东-北偏西。第三单元分数除法三、倒数1、倒数的意义:乘积是 1 的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1 的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数:把小数化为分数,再求倒数。3、1的倒数是 1;因为 11=1;0 没有倒数,因为 0 乘任何数都得 0,(

7、分母不能为 0)X k B 1 .c o m 4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。5、运用,a2/3=b1/4 求 a 和 b 是多少。把 a2/3=b1/4 看成等于 1,也就是求 2/3 的倒数和求 1/4 的倒数。1、分数除法的意义:乘法:因数 因数=积4 除法:积 一个因数 =另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。例如:1/2 3/5 意义是:已知两个因数的积是1/2 与其中一个因数3/5,求另一个因数的运算。2、分数除法的计算法则:除以一个不为 0 的数,等于乘这个数的倒数。3、分数除法比较大

8、小时的规律:(1)当除数大于 1,商小于被除数;(2)当除数小于 1(不等于 0),商大于被除数;(3)当除数等于 1,商等于被除数。“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。二、分数除法解决问题1,解法:(1)方程:根据数量关系式设未知量为X,用方程解答。解:设未知量为 X(一定要解设),再列方程用 X分率=具体量例如:公鸡有 20 只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有 X只。列方程为:X1/3=20(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”

9、的量。分率对应量对应分率 =单位“1”的量例如:公鸡有 20 只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:201/3 2、看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量 (1-分率)=单位“1”的量;例如:桃树有 50 棵,比苹果树少 1/6,苹果树有多少棵。列式是:50(1-1/6)(比多):具体量(1+分率)=单位“1”的量例如:一种商品现在是 80 元,比原价增加了1/7,原价多少?列式是:80(1+1/7)3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。例如:男生有 20 人,女生

10、有 15 人,女生人数占男生人数的几分之几。列式是:1520=15/20=3/4 4、求一个数比另一个数多几分之几的方法:用两个数的相差量单位“1”的量 =分数即求一个数比另一个数多几分之几:用(大数小数)另一个数(比那个数就除以那个数),结果写为分数形式。例如:5 比 3 多几分之几?(53)3=2/3 求一个数比另一个数少几分之几:用(大数小数)另一个数(比那个数就除以那个数),结果写为分数形式。例如:3 比 5 少几分之几?(53)5=2/5 说明:多几分之几不等于少几分之几,因为单位一不同。5 5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1效率和,即 1(1/时间

11、+1/时间),(工作效率=1/时间)例如:一项工程甲单独做要5 天完成,乙单独做要10 天完成,甲单独做要3 天完成,三人合做几天可以完成?列式:1(1/5+1/10+1/3)第四单元比(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15:10=15 10=3/2(比值通常用分数表示,也可以用小数或整数表示)15 10 3/2 前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。也可以表示两个不同量的比,得到一个新量。例:路程速度=时间。4、区分

12、比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“”除数商分数分子分数线“”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为0。9、体育比赛中出现两队的分是2:0 等,这只是一种记分的形式,不表示两个数相除的关系。10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15 10 151015

13、103/2(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比:6(2)用求比值的方法。注意:最后结果要写成比的形式。例如:15 10=15 10=1510 3/2=32 还可以 1510=15 10=3/2 最简整数比是 32 5、比中有单位

14、的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。例如:有糖水 25 克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占 1/5 用 25 1/5 得到糖的数量,水占 4/5 用 254/5 得到水的数量。2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。例如:有糖水 25 克,糖和水的比为 1:4,糖和水分别有几克?新 课标第

15、一 网糖和水的份数一共有1+4=5 一份就是 255=5 糖有 1 份就是 51 水有 4 分就是 54 第五单元圆的认识一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母 O表示。它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d 表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同一个圆内或等圆内,有无数条半径,有无数条直

16、径。所有的半径都相等,所有的接近长方形。长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。(2)拼出的图形与圆的周长和半径的关系。7 圆的半径 =长方形的宽圆的周长的一半 =长方形的长 新课标第一 网3、圆面积的计算方法:因为:长方形面积 =长宽所以:圆的面积 =圆周长的一半 圆的半径即 S圆=2 r r r r2圆的面积公式:S圆=r2 r2=S 圆 4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r 表示。(R=r+环的宽度.)S环=R2-r2或环形的面积公式:S环=(R2-r2)(建议用这个公式)。5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍

17、数。而面积扩大或缩小的倍数是这倍数的平方倍。例如:在同一个圆里,半径扩大3 倍,那么直径和周长就都扩大3 倍,而面积扩大 3 的平方倍得到 9 倍。6、两个圆:半径比 =直径比 =周长比;而面积比等于这比的平方。例如:两个圆的半径比是23,那么这两个圆的直径比和周长比都是23,而面积比是 49 7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:48、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。9、常用各值结果:=3.14;2=6.28;5=15.7 10、外方内圆(内切圆)公式S=0.86r2推

18、导过程:S=S正-S 圆=d2-r2=2r2r-r2=4r2-r2=r2(4-)=0.86r211、外圆内方(外切圆)公式 S=1.14r2推导过程:S=S圆-S 正=r2-dr/2 2=2rr/2 r=r2-2r2=r2(-2)=1.14r2(把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。13、S扇=S圆n/360;S扇环=S环n/360 14、扇形也是轴对称图形,有一条对称轴。半径半径的平方直径周长面积8 15、常见半径与直径的周长和面积的结果。新课

19、标第一 网第六单元百分数一、百分数的意义和写法(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。(二)、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0 以外的自然数。3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。二、百分数和分数、小数的互化(一)百分数与小数的互化

20、:1、小数化成百分数:把小数点向右移动两位(数位不够用0 补足),同时在后面添上百分号。2.百分数化成小数:把小数点向左移动两位(数位不够用 0 补足),同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100 的分数,能约分要约成最简分数。2、分数化成百分数:用分数的基本性质,把分数分母扩大或缩小成分母是100 的分数,再写成百分数形式。1 1 2 6.28 3.14 2 4 4 12.56 12.56 3 9 6 18.84 28.26 4 16 8 25.12 50.24 5 25 10 31.4 78.5 6 36 12 37.68 113.04 7

21、49 14 43.96 153.86 8 64 16 50.24 200.96 9 81 18 56.52 254.34 10 100 20 62.8 314 1.5 2.25 3 9.42 7.065 2.5 6.25 5 15.7 19.625 3.5 12.25 7 21.98 38.465 4.5 20.35 9 28.26 63.585 5.5 30.25 11 34.54 94.985 7.5 56.25 15 47.1 176.625 9 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)(三)常见分数小数百分数之间的互化;三、用百分数解决问题

22、(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到 100%,完成率、增长了百分之几等可以超过100%。2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。例如:例如:男生有 20 人,女生有 15 人,女生人数占男生人数的百分之几。列式是:1520=15/20=753、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”:单位“1”的量百分率=百分率对应量(2 百分率前是“多或少”的数量关系:单位“1”的量(1百分率)=百

23、分率对应量4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。解法:(1)方程:根据数量关系式设未知量为X,用方程解答。(2)算术(用除法):百分率对应量对应百分率=单位“1”的量10 5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式:w W w.K b 1.c o M(比少):具体量 (1-百分率)=单位“1”的量;例如:大米有 50 千克,比面粉树少 50,面粉有多少千克。列式是:50(1-50)(比多):具体量(1+百分率)=单位“1”的

24、量例如:工人做 110 个零件,比原计划多做了10,原计划做多少个?列式是:110(1+10)6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。用两个数的相差量单位“1”的量 =百分之几即求一个数比另一个数多百分之几:用(大数小数)另一个数(比那个数就除以那个数),结果写为百分数形式。甲比乙多几分之几的问题,方法A,(甲-乙)乙(建议用)方法 B,甲乙-100例如:老师计划改40 本作业,实际改了50 本,实际比计划多改了百分之几?列式是:(5040)40=0.25=25求一个数比另一个数少几分之几:用(大数小数)另一个数(比那个数就除以那个数),结果写为百分数形式。乙比甲少几分之

25、几的问题,方法A,(甲-乙)甲(建议用)方法 B,100-乙甲例如:张三家用了100度电,李四家用了90 度电,李四家比张三家少用百分之几?(10090)100=0.1=10说明:多百分之几不等于少百分之几,因为单位一不同。7、如果甲比乙多或少a,求乙比甲少或多百分之几,用a(1a)8、求价格先降 a又上升 a后的价格:1(1-a)(1+a)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。第七单元:扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此

26、也叫百分比图)。二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。(要在统计图上写出百分率)三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇11 形圆心角度数占圆周角度数的百分比。)四、应用:1.会观察统计图。新 课标第一 网2、你得到什么数学信息?回答、*占总体的百分之几;、*占的百分比最多,*占的百分比最少;3、你还能提什么数学问题:*和*一共占

27、百分之几。数学广角:数与形1、每幅图的圆点总数都可以看作是两个相同的数相乘的积,这些算式还可以用平方数的形式来表示。1+3=221+3+5=32 1+3+5+7=42得出:从 1 起连续奇数的和等于奇数个数的平方。2、从 2 起连续偶数的和等于偶数个数的平方加偶数个数(即(n2+n),或等于偶数个数乘比偶数个数大1 的数即 n(n+1)。补充内容(位置)1、我们用数对(数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”)确定点的位置。如数对(3,5)表示:(第三列,第五行)竖排叫列(从左往右看)横排叫行(从前往后看),先数列再数行。2、平移时用“

28、上”、“下”、“前”、“后”、“左”、“右”来表述,平移时图形的现状不变。3、图形左、右平移:行不变;图形上、下平移:列不变补充内容(“鸡兔同笼”问题)一、“鸡兔同笼”问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。二、“鸡兔同笼”问题的解题方法1、假设法(1)假如都是兔(2)假如都是鸡;(一般假设都是大数(脚多的),再求出两个脚的相差量,用大的相差量除以小的相差量得到小数(脚少的)最后再用总的头减小数得到大数。(我们称为设大得小,设小得大)例,有 34 个同学去划船,大船每船坐4 人,小船每船坐 2 人,租 12 条船刚好坐满,问大船和小船各租了几条。假设法:

29、X|k|B|1.c|O|m假设全部是大船则坐124=48(人)那么实际人数与大船做的人数相差48-34=14(人),实际一条大船比一条小船多坐4-2=2(人)大的相差量小的相差量得到小的量(即得到小船的数量),142=7(条)总的船减小的船得到大的船12-7=5(条)。(要注意单位)2、列方程法:例有34 个同学去划船,大船每船坐4 人,小船每船坐2 人,租12 条船刚好坐满,问大船和小船各租了几条。解:设大船有 X 条,则小船有 12-X 条4X+2(12-X)=34 4X是大船坐的人数,4 是大船每船坐 4 人,2(12-X)12 是小船坐的人数,小船每船坐2 人,有(12-X)条船,相加就得到总人数34人。2(12-X)用乘法分配律计算得到24-2X.。所以 4X+2(12-X)=34 4X+212-2X=34 4X+24-2 X=34 2 X+24=34 2 X=34-24 2 X=10 X=5 12-5=7(条)答:租大船 5 条,小船 7 条。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服