ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:25.54KB ,
资源ID:4269401      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4269401.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023年小升初数学重点题型复习.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023年小升初数学重点题型复习.doc

1、小升初数学重点题型复习具有独特构造特性和特定解题规律复合应用题,一般叫做经典应用题。一、平均数问题:平均数是等分除法发展。解题关键:在于确定总数量和与之相对应总份数。算术平均数:已知几种不相等同类量和与之相对应份数,求平均每份是多少。数量关系式:数量之和数量个数=算术平均数。加权平均数:已知两个以上若干份平均数,求总平均数是多少。数量关系式 (某些平均数权数)总和(权数和)=加权平均数。差额平均数:是把各个不不不小于或不不小于原则数某些之和被总份数均分,求是原则数与各数相差之和平均数。数量关系式:(大数小数)2=小数应得数 最大数与各数之差和总份数=最大数应给数 最大数与个数之差和总份数=最小

2、数应得数。例:一辆汽车以每小时 100 千米 速度从甲地开往乙地,又以每小时 60 千米速度从乙地开往甲地。求这辆车平均速度。分析:求汽车平均速度同样可以运用公式。此题可以把甲地到乙地旅程设为“ 1 ”,则汽车行驶总旅程为“ 2 ”,从甲地到乙地速度为 100 ,所用时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用时间是 ,汽车共行时间为 + = ,汽车平均速度为 2 =75 (千米)二、归一问题:已知互有关联两个量,其中一种量变化,另一种量也随之而变化,其变化规律是相似,这种问题称之为归一问题。根据求“单一量”环节多少,归一问题可以分为一次归一问题,两次归一问题。根据球痴单一量之后,解题

3、采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”归一问题。又称“单归一。”两次归一问题,用两步运算就能求出“单一量”归一问题。又称“双归一。”正归一问题:用等分除法求出“单一量”之后,再用乘法计算成果归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法计算成果归一问题。解题关键:从已知一组对应量中用等分除法求出一份数量(单一量),然后以它为原则,根据题目规定算出成果。数量关系式:单一量份数=总数量(正归一)总数量单一量=份数(反归一)例 一种织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?分析:

4、必要先求出平均每天织布多少米,就是单一量。 693 0 ( 477 4 31 ) =45 (天)三、归总问题:是已知单位数量和计量单位数量个数,以及不一样单位数量(或单位数量个数),通过求总数量求得单位数量个数(或单位数量)。特点:两种有关联量,其中一种量变化,另一种量也跟着变化,不过变化规律相反,和反比例算法彼此相通。数量关系式:单位数量单位个数另一种单位数量 = 另一种单位数量 单位数量单位个数另一种单位数量= 另一种单位数量。例 修一条水渠,原筹划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?分析:由于规定出每天修长度,就必要先求出水渠长度。因此也把此类应用题叫做

5、“归总问题”。不一样之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 6 4=1200 (米)四、和差问题:已知大小两个数和,以及她们差,求这两个数各是多少应用题叫做和差问题。解题关键:是把大小两个数和转化成两个大数和(或两个小数和),然后再求另一种数。解题规律:(和差)2 = 大数 大数差=小数(和差)2=小数 和小数= 大数例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求本来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,目前把乙数转化成 2 个乙班,即 9 4

6、 12 ,由此得到目前乙班是( 9 4 12 ) 2=41 (人),乙班在调出 46 人之前应当为 41+46=87 (人),甲班为 9 4 87=7 (人)五、和倍问题:已知两个数和及它们之间倍数 关系,求两个数各是多少应用题,叫做和倍问题。解题关键:找准原则数(即1倍数)一般说来,题中说是“谁”几倍,把谁就确定为原则数。求出倍数和之后,再求出原则数量是多少。根据另一种数(也也许是几种数)与原则数倍数关系,再去求另一种数(或几种数)数量。解题规律:和倍数和=原则数 原则数倍数=另一种数例:汽车运送场有大小货车 115 辆,大货车比小货车 5 倍多 7 辆,运送场有大货车和小汽车各有多少辆?分

7、析:大货车比小货车 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。列式为( 115-7 )( 5+1 ) =18 (辆), 18 5+7=97 (辆)六、差倍问题:已知两个数差,及两个数倍数关系,求两个数各是多少应用题。解题规律:两个数差(倍数1 )= 原则数 原则数倍数=另一种数。例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样长度,成果甲所剩长度是乙绳 长 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?分析:两根绳子剪去相似一段,长度差没变,甲绳所剩长度是乙绳 3 倍,实比乙绳多( 3-

8、1 )倍,以乙绳长度为原则数。列式( 63-29 )( 3-1 ) =17 (米)乙绳剩余长度, 17 3=51 (米)甲绳剩余长度, 29-17=12 (米)剪去长度。七、行程问题:有关走路、行车等问题,一般都是计算旅程、时间、速度,叫做行程问题。解答此类问题首先要弄清晰速度、时间、旅程、方向、杜速度和、速度差等概念,理解她们之间关系,再根据此类问题规律解答。解题关键及规律:同步同地相背而行:旅程=速度和时间。同步相向而行:相遇时间=速度和时间同步同向而行(速度慢在前,快在后):追及时间=旅程速度差。同步同地同向而行(速度慢在后,快在前):旅程=速度差时间。例 甲在乙背面 28 千米 ,两人

9、同步同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。已知甲在乙背面 28 千米 (追击旅程), 28 千米 里包括着几种( 16-9 )千米,也就是追击所需要时间。列式 2 8 ( 16-9 ) =4 (小时)八、流水问题:一般是研究船在“流水”中航行问题。它是行程问题中比较特殊一种类型,它也是一种和差问题。它特点重要是考虑水速在逆行和顺行中不一样作用。船速:船在静水中航行速度。水速:水流动速度。顺水速度:船顺流航行速度。逆水速度:船逆流航行速度。顺速=船速水速逆速

10、=船速水速解题关键:由于顺流速度是船速与水速和,逆流速度是船速与水速差,因此流水问题当作和差问题解答。 解题时要以水流为线索。解题规律:船行速度=(顺水速度+ 逆流速度)2流水速度=(顺流速度逆流速度)2旅程=顺流速度 顺流航行所需时间旅程=逆流速度逆流航行所需时间例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?分析:此题必要先懂得顺水速度和顺水所需要时间,或者逆水速度和逆水时间。已知顺水速度和水流 速度,因而不难算出逆水速度,但顺水所用时间,逆水所用时间不懂得,只懂得顺水

11、比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地所用时间,这样就能算出甲乙两地旅程。列式为 284 2=20 (千米) 2 0 2 =40 (千米) 40 ( 4 2 ) =5 (小时) 28 5=140 (千米)。九、还原问题:已知某未知数,通过一定四则运算后所得成果,求这个未知数应用题,咱们叫做还原问题。解题关键:要弄清每一步变化与未知数关系。解题规律:从最终成果 出发,采用与原题中相反运算(逆运算)措施,逐渐推导出原数。根据原题运算次序列出数量关系,然后采用逆运算措施计算推导出原数。解答还原问题时注意观测运算次序。若需要先算加减法,后算乘除法时别忘掉写括号。例 某小学三年

12、级四个班共有学生 168 人,假如四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为 168 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,因此四班原有人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 4-2+3=43 (人)一班原有人数列式为 168 4-6+2=38 (人);二班原有人数列式为 168 4-6+6=42 (人) 三班原有人数列式为 168 4-3+6=45 (人)。十、植树问题:此类应用题是以“植树”为内容。但凡研究总旅程、株距、段数、棵

13、树四种数量关系应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清与否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。解题规律:沿线段植树棵树=段数+1 棵树=总旅程株距+1株距=总旅程(棵树-1) 总旅程=株距(棵树-1)沿周长植树棵树=总旅程株距株距=总旅程棵树总旅程=株距棵树例 沿公路一旁埋电线杆 301 根,每相邻两根间距是 50 米 。后来所有改装,只埋了201 根。求改装后每相邻两根间距。分析:本题是沿线段埋电线杆,要把电线杆根数减掉一。列式为 50 ( 301-1 )( 201-1 ) =75 (米)十一、盈亏问题:是在等分除法基本上发展起来。

14、她特点是把一定数量物品,平均分派给一定数量人,在两次分派中,一次有余,一次局限性(或两次均有余),或两次都局限性),已知所余和局限性数量,求物品适量和参与分派人数问题,叫做盈亏问题。解题关键:盈亏问题解法要点是先求两次分派中分派者没份所得物品数量差,再求两次分派中各次共分物品差(也称总差额),用前一种差清除后一种差,就得到分派者数,进而再求得物品数。解题规律:总差额每人差额=人数总差额求法可以分为如下四种状况:第一次多出,第二次局限性,总差额=多出+ 局限性第一次恰好,第二次多出或局限性 ,总差额=多出或局限性第一次多出,第二次也多出,总差额=大多出-小多出第一次局限性,第二次也局限性, 总差

15、额= 大局限性-小局限性例 参与美术小组同学,每个人分相似支数色笔,假如小组 10 人,则多 25 支,假如小组有 12 人,色笔多出 5 支。求每人 分得几支?共有多少支色铅笔?分析:每个同学分到色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一种人分得 10 支。列式为( 25-5 )( 12-10 ) =10 (支) 10 12+5=125 (支)。十二、年龄问题:将差为一定值两个数作为题中一种条件,这种应用题被称为“年龄问题”。解题关键:年龄问题与和差、和倍、差倍问题类似,重要特点是伴随时间变化,年岁不停

16、增长,但大小两个不一样年龄差是不会变化,因而,年龄问题是一种“差不变”问题,解题时,要善于运用差不变特点。例 父亲 48 岁,儿子 21 岁。问几年前父亲年龄是儿子 4 倍?分析:父子年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子 4 倍,可知父子年龄倍数差是( 4-1 )倍。这样可以算出几年前父子年龄,从而可以求出几年前父亲年龄是儿子 4 倍。列式为: 21( 48-21 )( 4-1 ) =12 (年)十三、鸡兔问题:已知“鸡兔”总头数和总腿数。求“鸡”和“兔”各多少只一类应用题。一般称为“鸡兔问题”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现腿数差,可推算出某一种头数。解题规律:(总腿数鸡腿数总头数)一只鸡兔腿数差=兔子只数兔子只数=(总腿数-2总头数)2假如假设全是兔子,可以有下面式子:鸡只数=(4总头数-总腿数)2兔头数=总头数-鸡只数例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?兔子只数 ( 170-2 50 ) 2 =35 (只)鸡只数 50-35=15 (只)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服