ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:2.97MB ,
资源ID:4263479      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4263479.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(陕西省2020-2021学年高一上学期12月月考数学试题含解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

陕西省2020-2021学年高一上学期12月月考数学试题含解析.doc

1、试卷主标题 姓名:__________ 班级:__________考号:__________ 一、选择题(共14题) 1、 自行车停放时将后轮旁边的撑子放下,自行车就停稳了,这里用到了(  ) A .两条平行直线确定一个平面 B .两条相交直线确定一个平面 C .不共线的三点确定一个平面 D .三点确定一个平面 2、 三棱锥的 6 条棱中,异面直线有(  ) A . 4 对 B . 3 对 C . 2 对 D . 1 对 3、 下列判断正确的是(  ) A .正三棱锥一定是正四面体 B .底面是正方形的四棱锥是正四棱锥 C .底面是正方形的直四

2、棱柱是正四棱柱 D .底面是正方形的棱台是正四棱台 4、 如图是一个无盖的正方体盒子展开后的平面图, A , B , C 是展开图上的三点,则在正方体盒子中, ∠ ABC 的度数为(  ) A . 30° B . 45° C . 60° D . 90° 5、 已知 l , m , n 为三条不同的直线, α , β 为两个不同的平面,则下列命题中正确的是(  ) A .若 l ⊥ m , l ⊥ n ,且 m , n ⊂α ,则 l ⊥α B .若 m ∥β , n ∥β ,且 m , n ⊂α ,则 α∥β C .若 m ∥ n , n ⊂α ,则 m ∥α

3、 D .若 l ⊥β , l ⊂α ,则 α⊥β 6、 对于用斜二侧画法画水平放置的图形的直观图来说,下面说法错误的是(  ) A .原来平行的边仍然平行 B .原来垂直的边仍然垂直 C .原来是三角形仍然是三角形 D .原来是平行四边形的可能是矩形 7、 在空间四边形 ABCD 的各边 AB , BC , CD , DA 上依次取点 E , F , G , H ,若 EH 、 FG 所在直线相交于点 P ,则 A .点 P 必在直线 AC 上 B .点 P 必在直线 BD 上 C .点 P 必在平面 DBC 外 D .点 P 必在平面 ABC 内 8

4、 若一个平面图形的斜二测直观图是一个边长为 2 的正方形(如图),则原图的周长为(  ) A . B . 16 C . D . 9、 如右图,一个简单空间几何体的三视图其主视图与左视图都是边长为 的正三角形 , 其俯视图轮廓为正方形,则其体积是 A . B . C . D . 10、 用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积比为 ,截去的棱锥的高是 ,则棱台的高是 A . B . C . D . 11、 若过正方体 ABCD ﹣ A 1 B 1 C 1 D 1 的顶点 A 作直线 l ,使得直线 l 与三条棱 AB , AD , AA 1

5、 所在直线的夹角均相等,则这样的直线 l 的条数为(  ) A . 0 B . 1 C . 3 D . 4 12、 如图所示,在四面体 中,若 , , E 是 的中点,则下列结论中正确的是( ) A .平面 平面 B .平面 平面 C .平面 平面 ,且平面 平面 D .平面 平面 ,且平面 平面 13、 若 ① 表示 “ 直线 ” , ② 表示 “ 平面 ” .要使命题 “ 平行于同 _____ 的两个 _____ 平行 ” 为真命题,则前后两空依次可填写(  ) A . ① ; ① 或 ② ; ② B . ① ; ① 或 ① ; ② C . ① ; ②

6、或 ① ; ② D . ① ; ② 或 ② ; ① 14、 正方体 ABCD ﹣ A 1 B 1 C 1 D 1 的棱长是 1 ,顶点 A 在平面 α 内,若顶点 B , D , A 1 到平面 α 的距离分别是 1 , 2 , 4 ,那么正方体的其它顶点到平面 α 的距离可以是(  ) A . 3 , 4 , 5 , 6 B . 3 , 5 , 6 , 7 C . 5 , 6 , 7 , 8 D . 3 , 4 , 7 , 8 二、填空题(共5题) 1、 正方体 ABCD ﹣ A 1 B 1 C 1 D 1 中, AC 和 DC 1 所在直线的夹角大小是 ______ .

7、2、 已知一个等腰直角三角形的直角边长为 ,以它的一条直角边所在直线为轴旋转所生成的旋转体的侧面积为 ______. 3、 一个棱长为 的正四面体的顶点都在同一球面上,则这个球的半径为 ___________ . 4、 线段 AB 的主视图、左视图和俯视图的长度分别是 、 4 和 5 ,则 AB = _____ . 5、 在直三棱柱 ABC - 中, AB = BC = , = 2 , ABC = , E 、 F 分别为 、 的中点,沿棱柱的表面从 E 到 F 两点的最短路径的长度为 ________ 三、解答题(共3题) 1、 如图,四棱锥 P ﹣ ABCD 的底面 ABC

8、D 是正方形,棱 PD ⊥ 底面 ABCD , PD = DC , E 是 PC 的中点. ( 1 )证明: PA ∥ 平面 BDE ; ( 2 )证明:平面 BDE ⊥ 平面 PBC . 2、 如图,已知四棱锥 的底面为等腰梯形, , , 垂足为 , 是四棱锥的高. ( Ⅰ )证明:平面 平面 ; ( Ⅱ )若 , 60°, 求四棱锥 的体积. 3、 如图,在四棱锥 P - ABCD 中,底面 ABCD 为平行四边形, △ PCD 为等边三角形,平面 PAC ⊥ 平面 PCD , PA ⊥ CD , CD =2 , AD =3. ( 1 )设 G ,

9、H 分别为 PB , AC 的中点,求证 ∶ GH // 平面 PAD ; ( 2 )求证 ∶ PA ⊥ 平面 PCD ; . ( 3 )求直线 AD 与平面 PAC 所成角的正弦值 . ============参考答案============ 一、选择题 1、 C 【分析】 结合确定一个平面的方法确定正确选项 . 【详解】 自行车的前后轮与脚撑分别接触地面,使得自行车稳定, 此时自行车与地面的三个接触点不在同一条线上,即不共线的三点确定一个平面. 故选: C . 2、 B 【分析】 结合异面直线的知识确定正确选项 . 【详解】

10、考虑三棱锥 ABCD ,可得直线 AB 与直线 CD 、直线 AC 与直线 BD 、 直线 AD 与直线 BC 均为异面直线,共三对. 故选: B 3、 C 【分析】 由正四面体、正四棱锥、正四棱柱、正四棱台的定义辨析,即可判断 【详解】 正三棱锥不一定是正四面体,侧棱长与底面边长可能不相等,故 A 错误; 底面是正方形的四棱锥不一定是正四棱锥,顶点在底面的射影不一定是底面的中心,故 B 错误; 由正四棱住的概念可知,底面是正方形的直四棱柱是正四棱柱,故 C 正确; 底面是正方形的棱台不一定是正四棱台,原因是棱台的侧棱延长后的交点在两底面的射影不一定

11、为正方形的中心,故 D 错误. 故选: C 4、 D 【分析】 还原为正方体,如图所示,然后利用由正方体的性质求解即可 【详解】 还原为正方体,如图所示: 由正方体的性质可知, CB ⊥ 平面 AB , 所以 CB ⊥ AB ,即 ∠ ABC = 90° , 故选: D . 5、 D 【分析】 根据空间线线、线面、面面的位置关系有关知识对选项进行分析,由此确定正确选项 . 【详解】 对于 A :若 l ⊥ m , l ⊥ n ,且 m , n ⊂α ,若 m 和 n 为相交直线,才有 l ⊥α ,故 A 错误; 对于 B :若 m

12、 ∥β , n ∥β ,且 m 和 n 为相交直线, m , n ⊂α ,才有 α∥β ,故 B 错误; 对于 C :若 m ∥ n , m ⊄α ,且 n ⊂α ,才有 m ∥α ,故 C 错误; 对于 D :若 l ⊥β , l ⊂α ,根据面面垂直的判定,则 α⊥β ,故 D 正确; 故选: D . 6、 B 【分析】 根据斜二测画法的特点对四个选项逐一分析,即可得解 【详解】 由斜二侧画法可知,平行的线段仍然平行,三角形的直观图仍然是一个三角形,平行四边形的可能是矩形,原来垂直的直线不一定垂直. 故选: B 7、 B 【详解】 由平面的基

13、本性质可得,点 P 必在直线 BD 上 . 8、 B 【分析】 由题意可得原图形是一个平行四边形,然后根据斜二测画法中直观图与原图的关系可求出平行四边形的边长,从而可求出其周长 【详解】 由题意,平面图形的斜二测直观图是一个边长为 2 的正方形, 所以原图形是一个平行四边形, 斜二测画法中平行于 轴的边长在原图中长度为 2 , 斜二测画法中与 轴垂直的边长在原图中的长度为 , 则原图形的周长为 2+2+6+6 = 16 . 故选: B . 9、 A 【分析】 由三视图可知,该几何体为正四棱锥,根据三视图中数据,利用锥体体积公式可得结果 ,.

14、 【详解】 由三视图可知,该几何体为四棱锥, 底面是边长为 2 的正方形,面积为 4 , 四棱锥的高是正视图与侧视图三角形的高,为 , 所以,该几何体的体积为 , 故选 A. 【点睛】 三视图问题是考查学生空间想象能力最常见题型,也是高考热点 . 观察三视图并将其 “ 翻译 ” 成直观图是解题的关键,不但要注意三视图的三要素 “ 高平齐,长对正,宽相等 ” ,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响 . 10、 D 【详解】 试题分析:棱台的上下底面的面积比为 , 则上下底面的边长比是 ,则截得棱锥与原棱锥的高之比是 .

15、 则棱台的高等于 3. 考点:本题考查棱锥与棱台的性质 . 11、 D 【分析】 将小正方体扩展成 4 个小正方体,根据直线夹角的定义即可判断出符合条件的条数. 【详解】 设 ABCD ﹣ A 1 B 1 C 1 D 1 边长为 1 . 第一条: AC 1 是满足条件的直线; 第二条:延长 C 1 D 1 到 C 2 且 D 1 C 2 = 1 , AC 2 是满足条件的直线; 第三条:延长 C 1 B 1 到 C 3 且 B 1 C 3 = 1 , AC 3 是满足条件的直线; 第四条:找 C 1 关于 A 1 的对称点 C 4 , AC 4 是满

16、足条件的直线. 综上,满足题意的直线 l 的条数为 4 条. 故选: D 12、 C 【分析】 根据条件易知 , ,从而得到 平面 ,所以平面 平面 ,平面 平面 【详解】 因为 ,且 是 的中点,所以 因为 ,且 是 的中点,所以 又 , 平面 , 所以 平面 . 因为 平面 , 所以平面 平面 . 因为 平面 , 所以平面 平面 . 故选: C. 【点睛】 本题考查线面垂直的判定,面面垂直的判定,属于简单题 . 13、 A 【分析】 根据线线平行,面面平行的有关知识确定正确答案 . 【详解】 由平行公理

17、可得,平行于同一直线的两直线互相平行. 由平面平行的传递性可知,平行于同一平面的两平面互相平行. 平行于同一直线的两平面平行或相交. 平行于同一平面的两直线有三种位置关系:平行、相交、异面. 结合选项可知,前后两空依次可填写 ① ; ① 或 ② ; ② . 故选: A . 14、 B 【分析】 利用线段 BD 的中点也是线段 AC 的中点,可得 C 到平面 α 的距离;结合 ,可得 到平面 α 的距离,顶点 B 1 , D 1 到平面 α 的距离同理可得 【详解】 因为线段 BD 的中点也是线段 AC 的中点, 设点 C 到平面 α 的距离为 x

18、 , 则有 ,解得 x = 3 , 设点 到平面 α 的距离为 y , A 1 到平面 α 的距离为 4 由于 ,故 同理可得顶点 B 1 , D 1 到平面 α 的距离分别为 5 , 6 所以正方体的其它顶点到平面 α 的距离可以是 3 , 5 , 6 , 7 . 故选: B 二、填空题 1、 60° 【分析】 作出异面直线 和 所成的角,并求得角的大小 . 【详解】 如图,连接 A 1 C 1 ,由 AA 1 ∥ CC 1 , AA 1 = CC 1 , 得四边形 AA 1 C 1 C 为平行四边形,则 AC ∥ A 1 C 1 , ∴

19、∠ A 1 C 1 D 即为 AC 和 DC 1 所在直线的夹角, 连接 A 1 D ,可得 △ A 1 C 1 D 为等边三角形,即 ∠ A 1 C 1 D = 60° . ∴ AC 和 DC 1 所在直线的夹角大小是 60° . 故答案为: 60° 2、 【分析】 求出圆锥的底面半径和母线长根据圆锥的侧面积公式可得答案 . 【详解】 由题意得圆锥的底面半径为 ,圆锥的高为 , 所以母线长 , 所以侧面积为 . 故答案为: 3、 【分析】 将正四面体扩充为正方体,则正四面体的外接球即为正方体的外接球,球半径即为体对角线的一半,即

20、得解 【详解】 由题意,正四面体扩充为正方体,如图所示 若正四面体的棱长为 ,则正方体的棱长为 1 , 所以正方体的对角线长为 , 则正四面体的外接球半径为: 故答案为: . 4、 【分析】 结合长方体的结构来求得 . 【详解】 线段 AB 的主视图、左视图和俯视图的长度分别是 、 4 和 5 , 设 x 、 y 、 z 为长方体的长,宽,高, 则 x 2 +z 2 = 8 , y 2 + z 2 = 16 , x 2 + y 2 = 25 , 所以 2 ( x 2 + y 2 + z 2 )= 49 , 所以 , 所以 AB

21、 = . 故答案为: . 5、 【详解】 由题意得直三棱柱底面为等腰直角三角形. ① 若把面 和面 B 1 C 1 CB 展开在同一个平面内,则线段 EF 在直角三角形 A 1 EF 中,由勾股定理得 . ② 若把把面 ABA 1 B 1 和面 A 1 B 1 C 1 展开在同一个平面内,设 BB 1 的中点为 G ,在直角三角形 EFG 中,由勾股定理得 . ③ 若把把面 ACC 1 A 1 和面 A 1 B 1 C 1 展开在同一个面内,过 F 作与 CC 1 行的直线,过 E 作与 AC 平行的直线,所作两线交于点 H ,则 EF 在直角三角形 EFH

22、 中,由勾股定理得 . 综上可得从 E 到 F 两点的最短路径的长度为 . 答案: 点睛: ( 1 )研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题. ( 2 )在本题中由于展开的方式不同,故在解题中采用了分类讨论的方法,按照三种不同的方式将几何体的侧面展开,然后对所得的结果进行比较以得到最短距离. 三、解答题 1、 ( 1 )证明见解析;( 2 )证明见解析 . 【分析】 ( 1 )连结 AC ,设 AC 与 BD 交于 O 点,连结 EO ,证明 OE ∥ PA ,即可得证; ( 2 )证明 PD ⊥

23、 平面 ABCD ,可得 PD ⊥ AD ,从而可证 AD ⊥ 平面 PCD ,可得 AD ⊥ DE ,得 BC ⊥ DE ,从而可证 DE ⊥ 平面 PBC ,最后根据面面垂直的判定定理即可得证 . 【详解】 证明:( 1 )连结 AC ,设 AC 与 BD 交于 O 点,连结 EO . ∵ 底面 ABCD 是正方形, ∴ O 为 AC 的中点,又 E 为 PC 的中点, ∴ OE ∥ PA , ∵ OE ⊂ 平面 BDE , PA ⊄ 平面 BDE , ∴ PA ∥ 平面 BDE ; ( 2 ) ∵ PD = DC , E 是 PC 的中点, ∴ DE

24、⊥ PC , ∵ PD ⊥ 平面 ABCD , 平面 ABCD , ∴ PD ⊥ AD , 又由于 AD ⊥ CD , PD ∩ CD = D ,故 AD ⊥ 平面 PCD , 又 平面 PCD ,所以 AD ⊥ DE , 又由题意得 AD ∥ BC ,故 BC ⊥ DE , 于是,由 BC ∩ PC = C , DE ⊥ PC , BC ⊥ DE ,可得 DE ⊥ 平面 PBC , 又因 平面 BDE ,所以平面 BDE ⊥ 平面 PBC . 2、 ( Ⅰ )证明见解析;( Ⅱ ) . 【详解】 试题分析:( Ⅰ )因为 PH 是四棱锥 P-ABCD

25、的高. 所以 AC PH, 又 AC BD,PH,BD 都在平面 PHD 内 , 且 PH BD=H. 所以 AC 平面 PBD. 故平面 PAC 平面 PBD. ( Ⅱ )因为 ABCD 为等腰梯形, AB CD,AC BD,AB= . 所以 HA=HB= . 因为 APB= ADR=60 0 所以 PA=PB= ,HD=HC=1. 可得 PH= . 等腰梯形 ABCD 的面积为 S= AC x BD = 2+ . 所以四棱锥的体积为 V= x ( 2+ ) x = 考点:本题主要考查立体几何中的垂直关系,体积的计算. 点评:中档题,立体几何题

26、是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算.在计算问题中,有 “ 几何法 ” 和 “ 向量法 ” .利用几何法,要遵循 “ 一作、二证、三计算 ” 的步骤,利用向量则能简化证明过程.本题( I )较为简单,( II )则体现了 “ 一作、二证、三计算 ” 的解题步骤. 3、 ( 1 )证明见解析;( 2 )证明见解析;( 3 ) . 【分析】 ( 1 )构造中位线得到线线平行,从而证明线面平行; ( 2 )取棱 PC 的中点 N ,连接 DN ,得 DN ⊥ PC ,进一步得 DN ⊥ 平面 PAC . 又 PA ⊥ CD , 从而可得 PA ⊥ 平

27、面 PCD ; ( 3 )由 DN ⊥ 平面 PAC ,可知 ∠ DAN 为直线 AD 与平面 PAC 所成的角,再解三角形即可 . 【详解】 ( 1 )证明 ∶ 连接 BD ,易知 , BH = DH . 又由 BG = PG ,故 GH // PD . 又因为 平面 PAD , 平面 PAD ,所以 GH // 平面 PAD . ( 2 )证明 ∶ 取棱 PC 的中点 N ,连接 DN . 依题意,得 DN ⊥ PC . 又因为平面 PAC ⊥ 平面 PCD ,平面 PAC ∩ 平面 PCD = PC , 所以 DN ⊥ 平面 PAC . 又 平面 PAC ,所以 DN ⊥ PA . 又已知 PA ⊥ CD , , 所以 PA ⊥ 平面 PCD . ( 3 )连接 AN ,由( 2 )中 DN ⊥ 平面 PAC ,可知 ∠ DAN 为直线 AD 与平面 PAC 所成的角 . 因为 △ PCD 为等边三角形, CD =2 且 N 为 PC 的中点, 所以 DN = 又 DN ⊥ AN ,在 中, . 所以,直线 AD 与平面 PAC 所成角的正弦值为

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服