ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:10.94KB ,
资源ID:4244579      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4244579.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中数学-九年级数学教案和圆有关的比例线段.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学-九年级数学教案和圆有关的比例线段.docx

1、 教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明 难点:正确地写出定理中的等积式因为图形中的线段较多,学生容易混淆 2、教学建议 本节内容需要三个课时第1课时介绍相交弦定理及其推论,做例1和例2第2课时介绍切割线定理及其推论,做例3第3课时是习题课,讲例4并做有关的练3 (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性 学习 意识,激发学生的 学习 热情; (2)在教学中,

2、引导学生“观察?猜想?证明?应用”等 学习 ,教师组织下,以学生为主体开展教学活动 第1课时:相交弦定理 教学目标 : 1理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算; 2学会作两条已知线段的比例中项; 3通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神; 4通过推论的推导,向学生渗透由一般到特殊的思想方法 教学重点 : 正确理解相交弦定理及其推论 教学难点 : 在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接

3、写出定理 教学活动设计 (一)设置 学习 情境 1、图形变换:(利用电脑使AB与CD弦变动) 引导学生观察图形,发现规律:AD,CB 进一步得出:APCDPB 如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么? 组织学生观察,并回答 2、证明: 已知:弦AB和CD交于O内一点P 求证:PA?PBPC?PD (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成) (证明略) (二)定理及推论 1、 相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等 结合图形让学生用 数学 语言表达相交弦定理:在O中;弦AB,CD相交

4、于点P,那么PA?PBPC?PD 2、从一般到特殊,发现结论 对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且ABCD于P 提问:根据相交弦定理,能得到什么结论? 指出:PC 2 PA?PB 请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确教师纠正,并板书 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC 2 PA?PB 若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有: PC 2 PA?PB ;

5、AC 2 AP?AB;CB 2 BP?AB (三)应用、反思 例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长 引导学生根据题意列出方程并求出相应的解 例2 已知:线段a,b 求作:线段c,使c 2 ab 分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段 作法:口述作法 反思: 这 个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用同时可启发学生考虑通过其它途径完成作图 练习1 如图,AP2厘米,PB25厘米,CP1厘米,求CD 变式

6、练习:若AP2厘米,PB25厘米,CP,DP的长度皆为整数那么CD的长度是 多少? 将条件隐化,增加难度,提高学生 学习 兴趣 练习2 如图,CD是O的直径,ABCD,垂足为P,AP4厘米,PD2厘米求PO的长 练 习3 如图:在O中,P是弦AB上一点,OPPC,PC 交O于C 求证:PC 2 PA?PB 引导学生分析:由AP?PB,联想到相交弦定理,于是想到延长 CP交O于D,于是有PC?PDPA?PB又根据条件OPPC易 证得PCPD问题得证 ( 四)小结 知识:相交弦定理及其推论; 能力:作图能力、发现问题的能力和解决问题的能力; 思想方法: 学习 了由一般到特殊(由定理直接得到推论的过

7、程)的思想方法 (五)作业 教材P132中 9,10;P134中B组4(1) 第2课时 切割线定理 教学目标 : 1掌握切割线定理及其推论,并初步学会运用它们进行计算和证明; 2掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力 3能够用运动的观点 学习 切割线定理及其推论,培养学生辩证唯物主义的观点 教学重点 : 理解切割线定理及其推论,它是以后 学习 中经常用到的重要定理 教学难点 : 定理的灵活运用以及定理与推论问的内在联系是难点 教学活动设计 (一) 提出问题 1、引出问题:相交弦定理是两弦相交于圆内一点如果两弦延长交于圆外一点P,那么该点到割线与圆交

8、点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1) 当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线 长PA,PB,PT之间又有什么关系? 2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT 2 =PA?PB 3、证明: 让学生根据图2写出已知、求证,并进行分析、证明猜想 分析: 要证PT 2 =PA?PB, 可以证明 ,为此可证以 PA?PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB(图3)容易证明PTA=B又P=P,因此BPTTPA,于是问题可证 4、引导学生用语言表

9、达上述结论 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 (二)切割线定理的推论 1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系? 观察图4,提出猜想:PA?PB=PC?PD 2 、组织学生用多种方法证明: 方法一:要证PA?PB=PC?PD,可证 此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明PAC=D,P=P,因此PACPDB (如图4) 方 法二:要证 ,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB容易证明B

10、=D,又P=P 因此PADPCB(如图5) 方法三:引导学生再次观察图2,立即会发现PT 2 =PA?PB,同时PT 2 =PC?PD,于是可以得出PA?PB=PC?PDPA?PB=PC?PD 推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(也叫做割线定理) (三)初步应用 例 1 已知:如图6,O的割线PAB交O于点A和B,PA=6厘米,AB=8厘米, PO=10 . 9厘米,求O的半径 分析:由于PO既不是O的切线也不是割线,故须将PO延长交O于D,构成了圆的一条割线,而OD又恰好是O的半径,于是运用切割线定理的推论,问题得解 (解略)教师示范解题 例2 已

11、知如图7,线段AB和O交于点C,D,ACBD,AE,BF分别切O于点E,F, 求证:AEBF 分析:要证明的两条线段AE,BF均与O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且ACBD,ADBC 因此它们的积相等,问题得证 学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE 2 AC?CD和BF 2 BD?DC等 巩固练习:P128 练习1 、2 题 (四)小结 知识:切割线定理及推论; 能力:结合具体图形时,应能写出正确的等积式; 方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握 (五)作业教材P132中,11、12题 探究活动 最佳射门位置 国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米) 分析与解 如图1所示AB是足球门,点P是边锋所在的位置最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示即OP是圆的切线,而OB是圆的割线 故 ,又 , OB=30 . 34+7 . 3237 . 66 OP= (米) 注:上述解法适用于更一般情形如图2所示BOP可为任意角

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服