ImageVerifierCode 换一换
格式:PPTX , 页数:31 ,大小:203.44KB ,
资源ID:4231967      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4231967.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(算法合集之多角思考创造性思维.pptx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

算法合集之多角思考创造性思维.pptx

1、多角度思考 创造性思维-运用树型动态规划解题的思路运用树型动态规划解题的思路和方法探析和方法探析江苏省南京外国语学校江苏省南京外国语学校 陈瑜希陈瑜希引入引入信息学竞赛中通常会出现这样的问题:给一棵树,要求以最少的代价(或取得最大收益)完成给定的操作有很多问题都是在树和最优性的基础上进行了扩充和加强,从而变成了棘手的问题这类问题通常规模较大,枚举算法的效率无法胜任,贪心算法不能得到最优解,因此要用动态规划解决引入引入在近几年信息学竞赛中,需要运用树型动态规划解决的问题频繁出现这些问题变化繁多,各类思想精华渗透其中,对选手分析问题的能力和解题创造性思维有着较高的要求,因此它在竞赛中占据了重要地位

2、引入引入在此,我将分析近几年国际比赛、全国比赛中的树型动态规划问题,重点探讨几种树型动态规划问题的解法,并从这些问题的分析过程中,提炼出解决这类问题的思想方法多角度思考,创造性思维。旨在论述解决问题的思维过程,而不仅仅是解题方法例题解析例题解析NOI03 逃学的小孩 IOI05 河流 NOI06 网络收费 POI04 山洞 问题描述问题描述n个伐木的村庄在0号结点有一个巨大的伐木场,木料被砍下后,顺着河流而被运到0号结点的伐木场为了减少运输木料的费用,再额外建造k个伐木场这些伐木场建造后,木料可以在运输过程中第一个碰到的新伐木场被处理。问题描述问题描述所有的河流都不会分叉,也就是说,每一个村子

3、,顺流而下都只有一条路到0号结点。已知每个村子每年要产多少木料,求在哪些村子建设伐木场能获得最小的运费。N100K50问题抽象问题抽象本题的题意很明确,即建立k个伐木厂,使得把所有木材运送到最近的祖先伐木厂的费用最小。由于题目给定的是一棵树,数据规模又比较大,很容易联想到树型动态规划。状态的确立状态的确立首先必须有的是当前点及以当前点为根的子树中,一共建立了多少伐木厂,但是这显然是不够的,因为这个状态中没有任何与伐木厂位置相关的信息。因此我们还需要再加一维。加上有关伐木厂的位置的信息。表示把以from为根的子树中建立kleft个伐木厂,把木材全部运送到最近的祖先伐木厂,所需要的费用,并且fro

4、m有一个祖先伐木厂为to_。(注意到这里to_仅仅是from的祖先伐木厂,而未必是from的最近祖先伐木厂,这是为什么呢?)状态的转移状态的转移状态转移分2种情况讨论:在from建立伐木厂 不在from建立伐木厂状态的转移状态的转移在from建立伐木厂:即分配kleft个伐木厂给from的子结点,使得费用最小。这分配的过程,也就相当于背包问题。h1是用来解背包问题的临时数组,son是from的儿子结点。状态的转移状态的转移不在from建立伐木厂:依然是分配kleft个伐木厂给from的子结点,使得费用最小。不过不同的是,权不是 而是 ,因为from处不一定有伐木厂。h2是用来解背包问题的临时数

5、组,son是from的儿子结点。状态的转移状态的转移最后效率分析效率分析由于状态是3维的,而转移时需要枚举k、son、和j,看上去时间复杂度巨大。这是为什么?刚才的分析通过状态量和转移量相乘来分析效率,每一维都不到N。j的总数是n,son的总数也是n,所以虽然要枚举3个,但是总的运算量是一定的,时间复杂度为 。回顾回顾本题的动态规划是多维的,要通过分析本题的动态规划是多维的,要通过分析建立状态建立状态在兄弟结点之间要通过类似背包问题的在兄弟结点之间要通过类似背包问题的思想进行第二次动态规划思想进行第二次动态规划不是单纯的根据状态量和转移量分析时不是单纯的根据状态量和转移量分析时间复杂度,而是根

6、据转移总量分析间复杂度,而是根据转移总量分析总量分析均摊分析例题解析例题解析NOI03 逃学的小孩 IOI05 河流 NOI06 网络收费 POI04 山洞 问题描述问题描述M=2N个点,构成一个满二叉树配对收费:对于每两个用户i,j(1i j 2N)进行收费。用户可以自行选择两种付费方式A、B中的一种,收取的费用等于每两位不同用户配对产生费用之和。问题描述问题描述I付费方式J付费方式nA与nB大小关系付费系数k实际付费AAnAnB2k*Fi,jAB1BA1BB0AAnAnB0AB1BA1BB2问题描述问题描述对于用户i,如果他/她想改变付费方式(由A改为B或由B改为A),就必须支付Ci元给网

7、络公司以修改档案。给定每个用户注册时所选择的付费方式以及Ci,试求这些用户应该如何选择自己的付费方式以使得总费用最少(更改付费方式费用+配对收费的费用)。N10 问题转化问题转化配对收费的规则nB较多时,AA 收费系数为2n AB 收费系数为1n BB 收费系数为0n其他情况反之设想:nB较多时,在每一个A结点上有1个收费系数n否则在每一个B结点上有1个收费系数单点收费状态的确立状态的确立状态的设计应该与以i点为根的子树中A的个数有关,但仅仅这样是不够的,因为这些点是按A收费还是B收费还与以它每个祖先为根的子树中,A多还是B多有关。因此,这也是需要记录的。点i所管辖的所有用户中,有j个用户为A

8、,在i的每个祖先u上,如果nanb,则标0,否则标1,这个数列可以用二进制表示,用k记录,在这种情况下的最少花费。状态的转移状态的转移状态转移方程,其实就是将j个用户分配给i的左右子节点,并更改k 状态的转移状态的转移当i是叶节点时,可以根据k算出i与其它用户配对收费时所要交的费用,再根据i的初始情况加上AB的转化费用。效率分析效率分析粗略看来,空间复杂度是 ,时间复杂度是 ,对于本题的数据可以同时超空间和超时间了。不过这只是很粗略的分析,这些状态中有很多是取不到的。效率分析效率分析把根节点看做第0层,叶节点就是第n层,对于任意的第i层,A用户的个数最多只有 ,而祖先结点只有i个,即k最大只有

9、 ,把 的后两维合并成一维,空间复杂度其实只有 。效率分析效率分析再看时间复杂度,对于第i层,有 个结点,每个节点的状态数是O(m)的,状态转移的复杂度是 ,所以每层的复杂度是 。总共有n层,所以状态转移的时间复杂度是 。回顾回顾对收费规则进行转化对收费规则进行转化对时间复杂度进行均摊分析对时间复杂度进行均摊分析第二点在树型动态规划中有着广泛的运第二点在树型动态规划中有着广泛的运用,本题通过粗略的分析会超时,但是用,本题通过粗略的分析会超时,但是仔细分析之后,发现时间复杂度比粗略仔细分析之后,发现时间复杂度比粗略的分析少了一维的分析少了一维总结总结 这这2个例题从不同方面阐述了树型动态规个例题

10、从不同方面阐述了树型动态规划的解题方法,如:划的解题方法,如:n多维动态规划多维动态规划n兄弟结点之间通过类似背包的思想进兄弟结点之间通过类似背包的思想进行第二次动态规划行第二次动态规划n对复杂度的均摊分析对复杂度的均摊分析这些方法在比赛中有着广泛的运用这些方法在比赛中有着广泛的运用总结总结在此过程中,我认识到:面对陌生的问题,在此过程中,我认识到:面对陌生的问题,一方面要深入分析问题的属性,挖掘问题的一方面要深入分析问题的属性,挖掘问题的本质,另一方面要多角度思考,抓住问题的本质,另一方面要多角度思考,抓住问题的特殊性,从而创造出正确的解题思路。特殊性,从而创造出正确的解题思路。不过,这类问题变化繁多,我只是提供了一不过,这类问题变化繁多,我只是提供了一些解题的方法和思路,抛砖引玉,重要的是些解题的方法和思路,抛砖引玉,重要的是平时的不断积累和总结平时的不断积累和总结

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服