1、Outline1.Cell Signaling:Physiology2.Cell Signaling:Molecular Biology3.Chemical Kinetics4.Sniffers,Buzzers&Toggles5.Bistability&Oscillations in Frog Eggs6.Dynamical Perspective7.Example:Fission Yeast Cell Cyclenutrientsrepellantsdamagehormonesheat shockgrowth&divisionmovementgeneexpressiondeathBacter
2、iaGlucoseLactoselactosemetabolizingenzymes100Fission Yeast14 mm7 mmWild type Mutant (wee1D)FibroblastGrowth FactorPROLIFERATIONExtracellular MatrixCell-Cell ContactFibroblastProgrammedCell Deathhttp:/ Nucleus12hL:12hDActivityBody tempOutline1.Cell Signaling:Physiology2.Cell Signaling:Molecular Biolo
3、gy3.Chemical Kinetics4.Sniffers,Buzzers&Toggles5.Bistability&Oscillations in Frog Eggs6.Dynamical Perspective7.Example:Fission Yeast Cell CycleHanahan&Weinberg(2000)Signal Transduction NetworkEach icon represents a chemical species.Each arrow represents a chemical reaction that occurs at a certain r
4、ate.CyclinMPF=M-phase Promoting FactorX(t)=cyclin1.SynthesisEstimate k1 from the“red”data:2.DegradationEstimate k2 from the“blue”and“green”data above.How can it be that cyclin has different half-lives in different phases of the cell cycle?3.DimerizationX(t)=cyclin,C(t)=Cdc2,M(t)=dimer,Estimate k3 fr
5、om the data below,given that C0=100 nM.From your previous estimates of k1 and k2,estimate the steady state concentrations of cyclin in interphase and late anaphase(end of mitosis).4.Synthesis and DegradationPhasek1k2XssInterphaseAnaphaseThis case is unusual in that one can write down an“exact”soluti
6、on of the differential equation in terms of elementary functions.When an exact solution is not available,one can always take other approaches NumericalThis always works,but doesnt provide much insight.GraphicaldX/dt=0 at X=k1/k2,called a“steady state”solutionX(t)approaches k1/k2 for t large(“stable”
7、steady state)Outline1.Cell Signaling:Physiology2.Cell Signaling:Molecular Biology3.Chemical Kinetics4.Sniffers,Buzzers&Toggles5.Bistability&Oscillations in Frog Eggs6.Dynamical Perspective7.Example:Fission Yeast Cell CycleRSresponse(R)signal(S)linearS=1Rrate(dR/dt)rate of degradationrate of synthesi
8、sS=2S=3Gene ExpressionSignal-ResponseCurveRKinaseRPATPADPH2OPiProtein PhosphorylationRPrate(dRP/dt)0.250.511.52Phosphataseresponse(RP)Signal(Kinase)1 R 0RSEPERrate(dR/dt)S=0S=8S=16response(R)signal(S)Protein Synthesis:Positive FeedbackExample:Fuseresponse(R)signal(S)dyingApoptosis(Programmed Cell De
9、ath)livingOutline1.Cell Signaling:Physiology2.Cell Signaling:Molecular Biology3.Chemical Kinetics4.Sniffers,Buzzers&Toggles5.Bistability&Oscillations in Frog Eggs6.Dynamical Perspective7.Example:Fission Yeast Cell Cycleresponse(MPF)signal(cyclin)MPFCdc25-PCdc25MPF-PWee1(inactive)00.5100.511.5MPFCdc2
10、5-PCdc25-PMPFS=Total CyclincentrifugeSolomons protocol for cyclin-induced activation of MPFcytoplasmic extractpelletCa2+MCyclin Cyclo-heximideCdk1Wee1Cdc25Cyclin Cdk1Cell 63:1013(1990)ThresholdCyclin(nM)CDK activitySolomon et al.(1990)Cell 63:1013.Novak&Tyson(1993)J.Cell Sci.106:1153Pomerening et al
11、Nature Cell Biology 5:346-351(2003)Sha et al.,PNAS 100:975-980(2003)Testing activation threshold for Mitosis IInterphaseMitosis ID D90Cyclin B1 and 100 g/ml CHXTesting Thresholds in Cycling ExtractsTesting inactivation threshold for Mitosis IInterphaseInterphaseMitosis ID D90Cyclin B1100 g/ml CHXM
12、PFactivitytime16243240 0D D90 cyclin B(nM):90 min0 min60 min140 min 0D D90 cyclin B(nM):16322440MMMMThe activation threshold for Mitosis I is between 32 and 40 nM.The inactivation threshold for Mitosis I is between 16 and 24 nM.MPFcyclinMPFCdc25-PCdc25MPF-P(inactive)cyclin synthesiscyclin degradatio
13、nAPC If knock-out positive feedback loop,then oscillations become faster and smaller amplitudeFigure 4.Pomerening,Kim and FerrellWith+feedback Without+feedbackTyson,Chen&Novak,“Network dynamics and cell physiology,”Nature Rev.Molec.Cell Biol.2:908(2001).Tyson,Csikasz-Nagy&Novak,“The dynamics of cell
14、 cycle regulation,”BioEssays 24:1095(2002).Tyson,Chen&Novak,“Sniffers,buzzers,toggles and blinkers,”Curr.Opin.Cell Biol.15:221(2003).Csikasz-Nagy et al.,“Analysis of a generic model of eukaryotic cell-cycle regulation,”Biophys.J.90:4361(2006).ReferencesOutline1.Cell Signaling:Physiology2.Cell Signal
15、ing:Molecular Biology3.Chemical Kinetics4.Sniffers,Buzzers&Toggles5.Bistability&Oscillations in Frog Eggs6.Dynamical Perspective7.Example:Fission Yeast Cell CycleWee1Cdc25=k1-(kwee+k2)*MPF+k25(cyclin-MPF)=k1-k2*cyclind MPFdtd cyclindtMPFCyclinPhase Planedx/dt=f(x,y)dy/dt=g(x,y)(xo,yo)Dx=f(xo,yo)DtDy
16、g(xo,yo)DtOne-parameter bifurcation diagramparametervariablestable steady stateunstable steady statesaddle-nodesaddle-node Signal ResponsettpxOFFON(signal)(response)xyOne-parameter bifurcation diagramparametervariablestable steady stateunstable steady statesaddle-nodesaddle-nodeHopf(signal)(respons
17、e)MPFCyclinPhase Planedx/dt=f(x,y)dy/dt=g(x,y)MPFCyclinPhase Planedx/dt=f(x,y)dy/dt=g(x,y)MPFCyclinPhase Planedx/dt=f(x,y)dy/dt=g(x,y)Hopf Bifurcationx2p1stable limit cyclesssussslcmaxminHopf Bifurcationx2p1sssussslcparameter(signal)variable(response)HopfSecond ParametersubcriticalSecond ParameterCF
18、parameter(signal)variable(response)SNICSecond ParameterSLSNIC BifurcationInvariant CircleLimit Cyclex2p1nodesaddleSaddle-Node on anInvariant CirclemaxminmaxSNICSignal-Response Curve=One-parameter Bifurcation DiagramSaddle-NodeSupercritical HopfSubcritical HopfCyclic FoldSaddle-Node Invariant CircleO
19、utline1.Cell Signaling:Physiology2.Cell Signaling:Molecular Biology3.Chemical Kinetics4.Sniffers,Buzzers&Toggles5.Bistability&Oscillations in Frog Eggs6.Dynamical Perspective7.Example:Fission Yeast Cell CycleSG1DNAreplicationG2Mmitosiscell division1)Alternation ofS phase and M phase.2)Balanced growt
20、h anddivision.3)CheckpointsPCdc25Wee1Wee1PCdc25CycBPCdc20Cdc20Cdh1CKICycBCycBCKICKICycACycAAPC-PAPCTFBITFBACycECycDTFEATFEICyc E,A,BCycETFIATFIICdc20CKICycECdc14Cdc14Cdc14CycACycACycBCycDCdh1CycD050100150200250300012345mass/nucleusPCdk1CycBCdk1CycBCKICdh1Cdc20Wee1Cdc25Time(min)SG2MG1 SG2MG1 SMutants
21、 in Fission YeastPCdc25Wee1Wee1PCdc25CycBPCdc20Cdc20Cdh1CKICycBCycBCKICKICycACycAAPC-PAPCTFBITFBACycECycDTFEATFEICyc E,A,BCycETFIATFIICdc20CKICycECdc14Cdc14Cdc14CycACycACycBCycDCdh1CycDG1MS/G2Mmass/nucleusM01234500.40.83.0mass/nucleusCdk1:CycBG1S/G2MSNICHopfSN1SN2SN3PCdc25Wee1Wee1PCdc25CycBPCdc20Cdc
22、20Cdh1CKICycBCycBCKICKICycACycAAPC-PAPCTFBITFBACycECycDTFEATFEICyc E,A,BCycETFIATFIICdc20CKICycECdc14Cdc14Cdc14CycACycACycBCycDCdh1CycDmass/nucleuswee1 mass/nucleusCdk1:CycB01234500.40.81.2G1S/G2MPCdc25Wee1Wee1PCycBPCdc20Cdc20Cdh1CKICycBCycBCKICKICycACycAAPC-PAPCTFBITFBACycECycDTFEATFEICyc E,A,BCycE
23、TFIATFIICdc20CKICycECdc14Cdc14Cdc14CycACycACycBCycDCdh1CycDCdc25mass/nucleusmass/nucleusCdk1:CycBG1S/G2M01234500.40.83.0cki The Start module is not required during mitotic cyclesThe Start module is not required during mitotic cyclesPCdc25Wee1Wee1PCdc25CycBPCdc20Cdc20Cdh1CKICycBCKICKICycACycAAPC-PAPCTFBITFBACycECycDTFEATFEICyc E,A,BCycETFIATFIICdc20CKICycECdc14Cdc14Cdc14CycACycACycBCycDCdh1CycDCycB00.40.82.00 1 2 3 4 5G1S/G2Mcki wee1tsmass/nucleusCdk1:CycBUnbalanced Growthand Division is Lethal!
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818