ImageVerifierCode 换一换
格式:PPTX , 页数:84 ,大小:398.50KB ,
资源ID:4225101      下载积分:16 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4225101.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(气体动力学讲义吴子牛lecture8.pptx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

气体动力学讲义吴子牛lecture8.pptx

1、VIII:气体动力学第八讲线化方法:纪念钱学森先生九十寿辰2001年11月19日星期二上午9:50中午12:15明理楼422钱学森简况1911年12月11日出生于上海,3岁到北京1929年中学毕业,考入上海交大机械工程系,1930年因病休学一年1934年上海交大机械系铁道工程专业毕业19341935考取清华大学留美资格(飞机设计)并在杭州飞机厂实习,1935年到MIT.1936年转学加州理工学院航空系(从师于Von Karman)1939年获得航空、数学博士学位(高速气动力学问题),在加州理工学院任助理教授,出师第1篇论文为薄壳体稳定性理论(1940年)钱学森简况续1942年,参与美国机密工作

2、火箭技术等)1946年,其导师von Karman与加州理工学院出现关系问题辞职。钱学森也离开,到MIT任副教授(空气动力学).1947年,钱学森36岁成为MIT正教授1949年秋回加州理工学院任喷气推进技术正教授,同年接到召唤其回国的信件1950年7月被取消参加机密研究的资格,准备回国时,被拘留。保释后被监视5年之久(1955年6月表达需要祖国帮助愿望)1954年在美国发表工程控制论专著钱学森简况续在周总理关怀下,1955年回国1955年11月与钱伟长合作筹建力学所,1956年1月5日任第一任所长1957年任力学学会第一任理事长1957年其工程控制论获中科院自然科学一等奖,并被补选为中国科

3、学院学部委员1958年任中国科技大学近代力学系主任,1959年(48岁)入党1961年任中国自动化学会首任理事长后为中国的火箭、导弹等航天事业作出重大贡献钱学森学术成就应用力学:A空气动力学,B固体力学喷气推进工程控制论物理力学工程科学其它(化学流体力学等)内容提要 基本原理定常势流基本方程速度图法卡门钱学森方法小扰动线化方法线化方法的求解内容提要VIII-1:基本原理气体动力学基本方程为非线性方程,一般情况下无法求解。特殊情况下存在特征线方法;某些情况下可以将方程线化,线化方程的求解有许多成熟的方法。方法一:速度图法。将物理空间的方程用变换换成速度空间的方程,使方程变为线性的。方法二:小扰动

4、线化方法。由于物体几何形状比较薄平,物体的存在只给均匀来流一个小的扰动。于是可以针对小扰动量将方程线化。符号约定空间:或速度:或VIII-2:定常势流基本方程基本假设:理想气体、量热完全气体、均能、均熵、无旋基本方程:无旋假设 :存在势函数VIII-3:速度图法考虑平面二维定常势流:通过变换,将物理平面(x,y)上的非线性方程,转换为速度平面()的线性方程,称为速度图法(Hodograph Method)VIII-3:速度图法物理平面与速度平面物理平面:速度平面:VIII-3:速度图法流线坐标系流线坐标系(s,n)流线坐标系与物理坐标系的关系(旋转角度为 ):VIII-3:速度图法流线坐标系中

5、的方程方程转换VIII-3:速度图法思考题考虑流线坐标系下的方程 假设流动为简单波流动,即 ,试证明VIII-3:速度图法坐标系方程定义势函数 和流函数由 得VIII-3:速度图法失端曲线变换失端曲线变换,也称恰普雷津变换VIII-3:速度图法失端曲线变换续由 得VIII-3:速度图法恰普雷津方程将 代入得恰普雷津方程VIII-3:速度图法恰普雷津方程其它形式将 通过交叉求导并相减得VIII-3:速度图法恰普雷津方程的精简形式定义 :则恰普雷津方程变为VIII-3:速度图法必做习题讨论恰普雷津方程组 在什么情况下存在特征线。在存在情况下,求出特征线和相容关系式。讨论是否存在简单波。VIII-3

6、速度图法速度图法的求解思路通过求解恰普雷津方程(存在若干特解),得 从而得由 得VIII-3:速度图法速度图法的求解思路续由消去 得VIII-3:速度图法速度图法的求解思路续由 积分得VIII-3:速度图法极限线(limit line)速度图法有效的必要条件是变换有效,即变换雅可比矩阵的行列式满足由 定义的曲线称为极限线。VIII-3:速度图法速度图法的困难与优点在速度平面上,边界条件变为非线性的,所以速度图法极少能给出边值问题的解析解对于简单波流动(P-M流动),恰普雷津变换是退化的,即在速度平面上,简单波流动区域退化为一条线复杂流动区域的部分区域可以用速度图法分析,有较多的研究结果如果流

7、场与无穷远流场差别不大,等熵线可以用其在无穷远状态的切线代替,此时可压缩流恰普雷津方程与不可压缩流的方程相似,从而可以利用不可压缩流的结论(卡门钱学森方法)VIII-3:速度图法VIII-4:卡门钱学森法发表于1939年的“Two-dimensional subsonic flow of compressible fluids”,J.Aeronaut.Sci.,6,399(1939),是作者在冯卡门指导下完成的博士论文的一部分。背景1:在高速流动范围设计机翼所遇到的翼面压力分布计算遇到困难(只有超音速范围可以用特征线理论,亚音速范围内机翼很薄或者速度极低时有小扰动线化理论和不可压缩流方法)。1

8、902年,俄国的恰普雷津(S.A.Chaplygin)在博士论文中对定常势流作变换,将自变量从物理平面 变换到速度平面 ,将方程变为线性方程,被称为速度图法。VIII-4:卡门钱法卡门钱学森法续背景2:作为近似,恰普雷津建议将等熵关系式用它的切线代替。后来有学者用驻点处的切线尽心近似计算,计算结果只对马赫数低于0.5的情况有效。背景3:冯卡门指导钱学森用来流处的切线进行近似,得到更好的结果。这是因为,在流场大部分区域,流动参数更接近来流值,而不是驻点值。当等熵线可以用其在无穷远状态的切线代替时,可压缩流恰普雷津方程与不可压缩流的方程相似,从而可以利用不可压缩流的结论(卡门钱学森方法)获得可压缩

9、流的解。VIII-4:卡门钱法等熵曲线的近似VIII-4:卡门钱法卡门钱学森近似来流处等熵线的斜率为卡门钱学森近似(切向气态律)VIII-4:卡门钱法卡门钱学森近似性质对于切向气态律,有证明:由 另外,由动量方程VIII-4:卡门钱法卡门钱学森近似性质续由 得由VIII-4:卡门钱法卡门钱学森近似性质总结在卡门钱学森近似下,有VIII-4:卡门钱法是否 对于所考虑的(等熵、绝热)流动取 得与前面的性质一致,因此,有书把 作为卡门钱学森假设的出发点。VIII-4:卡门钱法恰普雷津方程定义 于是恰普雷津方程为VIII-4:卡门钱法不可压缩流的恰普雷津方程对于不可压缩流动,因此恰普雷津方程简化为如下

10、的柯西黎曼方程VIII-4:卡门钱法线性气态律的恰普雷津方程对于可压缩流动和卡门钱学森近似,已经证明 因此方程简化为 与不可压缩流方程完全一致。VIII-4:卡门钱法可压不可压相似比拟在卡门钱学森近似前提下,速度平面上的方程为对于不可压流动(以下标I区别),速度平面上的方程为因此,在速度平面上,可压缩流与不可压缩流的解在对应自变量相等处完全相等,即VIII-4:卡门钱法对应点速度关系式由 得VIII-4:卡门钱法密度与马赫数由 和 得由K=1得VIII-4:卡门钱法密度续由 和得VIII-4:卡门钱法对应点坐标由得VIII-4:卡门钱法压力系数 由 得对于不可压缩流动VIII-4:卡门钱法压力

11、系数关系式由得卡门钱学森公式()VIII-4:卡门钱法结束语计算可压缩流翼型表面压力时,需要知道对应点不可压缩流的压力(实验或解析),且对应点关系。当马赫数较小(M0.8)并且翼型较薄时,对应点基本相等 ,即两个流场取相同的翼型。卡门钱学森公式中的线性气态率假设实际上属于一种小扰动假设(压力被低估),另外两个流场取相同翼型也是一种近似(压力被高估)。两种效应相抵,使得该公式直至高马赫数(M=0.7)仍然有效(p203)。VIII-4:卡门钱法VIII-5:小扰动线化方法基本假设:来流 与 向一致(风轴),在来流上叠加小扰动 小扰动满足方程VIII-5:小扰动线化法翼型定义三个参数:弦长 ,弯度

12、曲线 ,厚度曲线上下表面分别用“+”和“-”表示小扰动线化方程的推导将 代入 得VIII-5:小扰动线化法亚、超流动小扰动线化方程对于一般超音速流动和亚音速流动 因此在小扰动假设下,从而简化为如下的小扰动线化方程VIII-5:小扰动线化法跨、高超流动小扰动方程对于跨音速流动或高超音速流动 因此即使在小扰动假设下,从而需要保留的某些高阶项,最后方程为非线性的(p154)VIII-5:小扰动线化法小扰动线化方程的适应范围流动范围:一般亚音速和一般超音速流动,即马赫数不太接近1,也不能太大流动位置:离开驻点较远(因为在驻点处,),但如果驻点影响范围与整个流动区域相比很小,则处处按小扰动线化处理效果不

13、错,所算得的升力系数和力矩系数令人满意物面形状:在来流方向比较长,在某个(只此一个)垂直于来流的方向很薄。VIII-5:小扰动线化法无旋流线化方程在无旋流假设下,存在势函数 ,满足 从而小扰动线化方程为VIII-5:小扰动线化法线化物面边界条件物面方程:物面法向:物面无穿透条件:零高度边界条件:VIII-5:小扰动线化法压力系数压力系数定义定常均能假设等熵假设 因此VIII-5:小扰动线化法线化压力系数将 代入 得VIII-5:小扰动线化法VIII-6:线化方程的求解分离变量法与积分变换法相似法则(利用不可压缩流结果)特征线理论(略)叠加法(线化流存在源、汇、偶极子)其它方法:旋成体理论(p1

14、90)VIII-6:线化方程求解分离变量与积分变换法说明问题1:沿波形壁 的二维流动.定解问题:方程类型亚音速流动,令 ,方程可以写为 属于椭圆型方程,扰动传播有限亚音速流动,令 ,方程可以写为 属于双曲型方程,扰动可以传播至无穷远条件亚音速流动,超音速流动,亚音速流用分离变量法求得从而按定义有超音速流用积分变换法(达朗伯解)对于向右流动,按定义有流线比较流线方程:亚音速:超音速:壁面压力系数比较亚音速:超音速:说明问题2:超音速二维翼型线化解假设:超音速流,二维薄翼,小攻角,于是只有小扰动波产生,没有P-M膨胀波或激波那样的非线性波(均为马赫波)。这要求是薄翼、小攻角、尖前缘(当然也是尖后缘

15、)、来流马赫数不高().物理模型(p172-179)亚音速线化流相似法则亚音速小扰动方程 通过简单仿射变换可以化成不可压缩流的拉普拉斯方程 由此可以建立可压缩流场和不可压缩流场之间的对应关系(相似关系),利用(实验或解析容易获得的)不可压缩流场的解简单求出可压缩流场的解。仿射变换基本原理可压缩流场和不可压缩流场之间,如果各变量(包括自变量和因变量)之间存在比列关系(不同参数比列系数可以不一样),使得控制方程和边界条件都能在可压和不可压之间互换,则各参数的比列对应关系称为仿射变换。方程相似法则求比列系数k,a,b,c,如果关系式 使得事实上由(1)代入(2)得 因此,对 和任何k,上式都退化为(

16、3)物面相似法则当 ,取何 使得物面边界条件事实上,将 代入(1)得由(3)知,如果 ,则(1)退化为(2).总结可压缩流场和不可压缩流场之间存在如下仿射关系因此,先求解或实验测得不可压问题的解后,就可按(1)获得可压缩流场的解。连带相似法则在满足仿射变换 的可压与不可压流场之间,其它相似关系式可以按下式求得:戈太特法则亚音速线化流场的参数可以借助于一个仿射变换的不可压缩无旋流场的相应参数间接求出,两个流场的空间关系式满足 相应点之间的流动参数满足戈太特法则应用范围:小扰动流动。空气动力学应用。考虑两个处于可压缩流场和不可压缩流场中的机翼。翼型尺寸关系由 得 因此,按戈太法则转换后,不可压缩流

17、场翼型在x方向不变,在z方向缩小 倍流场尺寸关系考虑流线对x轴的倾角 。则 即 ,按戈太法则转换后,不可压缩流场在x方向不变,在z方向缩小 倍升力系数力矩系数关系由得由得戈太特法则缺陷应用戈太特法则,从不可压缩流场获得可压缩流场的解,不可压缩流场的翼型与来流马赫数有关,而且总是与可压缩流场的翼型不一样。普朗特葛劳渥特法则戈太特法则只能建立可压缩与不可压缩中不同翼型(并且不同攻角)的气动力关系,从而用起来十分不方便。普朗特葛劳渥特法则建立可压缩与不可压缩中相同翼型(并且相同攻角)的气动力关系,从而得到可压缩性对同一翼型的气动力影响。基本原理引入两个不可压缩流场及翼型。其中不可压翼型1是可压缩流场

18、的仿射变换翼型,而不可压翼型2与可压缩翼型完全一样。由可压缩与不可压缩1的气动力关系,以及不可压缩2与不可压缩1的关系,获得可压缩与不可缩2的关系具体应用参阅气体动力学(p167-172)由于要用到不可压缩流动的流动参数与翼型参数的关系,有关理论包括三维机翼的升力线理论可以参阅“空气动力学”(陈再新等,航空工业出版社,1993)。叠加法经过仿射变换或其它变换 亚、超音速的小扰动线化方程 可以转化为拉普拉斯方程拉普拉斯方程的基本解包括均匀流、点源(汇)、偶极子和点涡(线涡),用它们进行叠加,满足一定的边界条件,就可以构成机身、机翼或翼身组合体等绕流问题的解。拉普拉斯方程基本解方程基本解一般形式基本解例子:点源(汇)、偶极子和点涡(线涡)。例如,位于()、强度为 的点源解为亚音速流基本解仿射变换():由不可压缩流的基本解 得可压缩流的基本解例(源)超音速流基本解复仿射变换():由不可压缩流的基本解 得可压缩流的基本解例(源)补遗均匀来流点源可以使气流撑开,由此可以模拟旋成体流动(在轴线上布源)均匀来流加偶极子可以模拟绕封闭物体的运动总之,通过基本解的叠加(对于线性问题,叠加法是成立的),可以模拟许多流动问题。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服