ImageVerifierCode 换一换
格式:PPTX , 页数:31 ,大小:242.87KB ,
资源ID:4185376      下载积分:12 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4185376.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(算法合集之生成树的计数及其应用.pptx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

算法合集之生成树的计数及其应用.pptx

1、生成树的计数及其应用芜湖一中芜湖一中芜湖一中芜湖一中 周冬周冬周冬周冬引入最小(大)生成树最小(大)度限制生成树最优比率生成树生成树生成树例一高速公路一个国家需要在n座城市之间建立通信网络。某些城市之间可以铺设通信线路。要求任意两座城市之间恰好有一条通讯路线,试求方案个数。满足:1n 12。分析首先将问题抽象成图论模型点:城市边:通讯线路任意两点之间恰好只有一条路径这是一颗树!问题转化为:给定一个n个点的无向图,其中无重边和自环,试求其生成树的个数。分析由于原题规模较小,因此我们可以使用一些复杂度较高的算法来解决它,如指数级的动态规划算法。但是,如果规模更 一些呢?预备知识关联矩阵、Kirch

2、hoff矩阵大 图的关联矩阵对于无向图G,我们定义它的关联矩阵B是一个n*m的矩阵,并且满足:如果ek=(vi,vj),那么Bik和Bjk一个为1,另一个为-1,而第k列的其他元素均为0。图G的关联矩阵如右下角所示:v1v2v3图Ge1e2e3v1v2v3e1 e2 e3图的关联矩阵图的关联矩阵有什么特殊的性质呢?我们不妨来考察一下B和它的转置矩阵BT的乘积。图的关联矩阵根据矩阵乘法的定义,我们可以得到:也就是说,BBTij是B第i行和第j行的内积。因此,当i=j时,BBTij=vi的度数;而当ij时,如果存在边(vi,vj),那么BBTij=-1,否则BBTij=0。我们通常将BBT称为图的

3、Kirchhoff矩阵。图的Kirchhoff矩阵对于无向图G,它的Kirchhoff矩阵C定义为它的度数矩阵D减去它的邻接矩阵A。显然,这样的定义满足刚才描述的性质。有了Kirchhoff矩阵这个工具,我们可以引入Matrix-Tree定理:对于一个无向图G,它的生成树个数等于其Kirchhoff矩阵任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于任意一个r,将C的第r行和第r列同时删去后的新矩阵,用Cr表示。Matrix-Tree定理让我们通过一个例子来解释一下定理。如图所示,G是一个由5个点组成的无向图。它的Kirchhoff矩阵C为Matrix-Tree定理我们取r

4、2,根据行列式的定义易知|detC2|=11,这11颗生成树如下图所示。这个定理看起来非常“神奇”,让我们尝试着去证明一下吧!定理的证明经过分析,我们可以发现图的Kirchhoff矩阵C具有一些有趣的性质:C的行列式总是0。如果图是不连通的,则C的任一个n-1阶主子式的行列式均为0。如果图是一颗树,那么C的任一个n-1阶主子式的行列式均为1。证明略。定理的证明我们知道,C=BBT,因此,我们可以把C的问题转化到BBT上来。设Br为B去掉第r行得到的矩阵,容易知道Cr=Br Br T。这时,根据Binet-Cauchy公式,我们可以将Cr的行列式展开。其中,是把Br中属于x的列抽出后形成的新矩

5、阵。定理的证明注意观察上面的式子,实际上是图Gx的Kirchhoff矩阵的一个n-1主子式。其中Gx是由所有的顶点和属于x的边组成的一个G的子图。若属于x的n-1条边形成了一颗树时,由Kirchhoff矩阵的性质可知 等于1。若属于x的n-1条边没有形成树,则Gx中将至少含有两个连通块,这时 等于0。因此,我们认为:每次从边集中选出n-1条边,若它们形成了生成树,则答案加1,否则不变。定理的理解当x取遍边集所有大小为n-1的子集后,我们就可以得到原图生成树的个数。这样我们成功证明了定理!刚才的证明过程看起来有些“深奥”,下面就让我们从直观上来理解一下这个定理的原理。定理的理解试求方程x1+x2

6、x3 =2所有非负整数解的个数。这是大家都很熟悉的一道组合计数问题。通常的解法是,设有2个1和两个,我们将这4个元素任意排列,那么不同的排列的个数就等于原方程解的个数,即 。为什么要这样做呢?定理的理解我们将所有6种排列列出后发现,一种排列就对应了原方程的一个解:11对应x1=0,x2=0,x3=2 1 1对应x1=0,x2=1,x3=1 11 对应x1=0,x2=2,x3=0也就是说,我们通过模型的转化,找出了原问题和新问题之间的对应关系,并利用有关的数学知识解决了转化后的新问题,也就同时解决了原问题。这种转化的重要意义在于:在不同问题之间的架起了互相联系的桥梁。定理的理解回到我们讨论的M

7、atrix-Tree定理上来。我们同样是经过模型的转化后(将图模型转化为矩阵模型),发现Binet-Cauchy公式展开式中的每一项对应着边集一个大小为n-1的子集。其中,值为1的项对应一颗生成树,而没有对应生成树的项值为0。这样,将问题转化为求展开式中所有项之和。再利用已有的数学知识,就可以成功解决这个问题。两个问题的对比方程的解方程的解图的生成树图的生成树类似排列方案排列方案展开式的项展开式的项类似对应对应不同之处在于:相互之间的对应关系更加隐蔽、复杂需要更加强大的数学理论来支撑定理的扩展利用该定理,我们可以容易得到著名的Cayley公式:完全图Kn有nn-2颗生成树。我们刚才只对图中没有

8、重边的情况进行了分析。实际上,图中有重边时该定理仍然成立,并且证明与没有重边的情况类似。该定理也可以扩展到有向图上,用来计算有向图的外向树的个数。例二 UVa p10766 Organising the Organisation例三 国王的烦恼信息学竞赛中的应用 例三国王的烦恼 一个王国由n座城市组成。由于遭到了洪水的袭击,许多道路都被冲毁了。国王组织了专家进行研究,列举出了所有可以正常通行的道路。其中有的已经被冲毁,需要重新修复;有的则可以继续使用。并且所有可以继续使用的道路没有形成环。例三国王的烦恼国王希望修建最少的道路,使得任意两个城市之间都能互达。请你计算可行方案的总数。下面我们通过一

9、个例子来看一下。bacd如右图所示,王国由a、b、c、d,4座城市组成其中蓝色边表示可以通行但需要修复的道路红色边表示可以继续使用的道路共有2种方案,如右下角所示bacdbacd方案1方案2问题分析难点在于由于必选边的存在,我们无法直接应用Matrix-Tree定理我们知道,如果要求生成树中必须包含某条边e,那么,我们可以将e压缩,将原图的问题转化到新图上来。因此,我们需要1、将所有的必选边压缩2、求压缩后的图的生成树的个数问题分析压缩一条边的时间复杂度为O(n),而最多只要压缩n-1条边。因此,第一步的复杂度为O(n2)。计算一个图的生成树的个数的时间复杂度依赖于求其Kirchhoff矩阵行列式的时间复杂度,为O(n3)。因此,整个算法的时间复杂度为O(n3)。总结矩阵的行列式图的生成树模型转化模型转化数学证明数学证明扎实的数学功底是解决问题的保证创造性的联想则是解决问题的灵魂

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服