ImageVerifierCode 换一换
格式:PPTX , 页数:43 ,大小:5.07MB ,
资源ID:4171785      下载积分:14 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4171785.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(AGASAResults阿嘉莎的结果.pptx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

AGASAResults阿嘉莎的结果.pptx

1、OutlinePhysics motivationActivities at Akeno ObservatoryEnergy determination&spectrumShower properties&analysisSystematic error in energy estimationComparison with other results(HiRes&A1)Muon component&chemical compositionGamma-ray shower propertiesChemical composition&gamma-ray flux limit estimatio

2、nSummary&outlookPhysics motivationUnderstanding nature&origin of UHECRs(1019eV)Energy spectrumArrival direction distributionChemical compositionSuper GZK particlesincl.highest energy cosmic rays(1020eV)Bottom-up scenariosAGNs/GRBs/Galactic clusters etc.Hadronic primaries predictedTop-Down scenariosT

3、opological defectsSuper heavy dark matter Z-burstGamma-ray+nucleon 1ries predictedSource location still not identified,.but.pUHECR CMB N+(E0 5x1019eV)Arrival direction distribution(4x1019eV;4x1019eV within 2.5)6 doublets()&1 triplet()observed Against expected 2.0 doublets(Pch 1020eVLog E19.03.4Space

4、 angle distribution of eventsSignificant peak 0 degreeimplying presence of compact EHECR sourcesLog E19.64.4Institute for Cosmic Ray Research,University of Tokyo (Kashiwa)Masaki Fukushima,Naoaki Hayashida,Hideyuki Ohoka,Satoko Osone,Makoto Sasaki,Masahiro Takeda,Reiko ToriiKinki University(Osaka)Mic

5、hiyuki ChikawaUniversity of Yamanashi(Kofu)Ken Honda,Norio Kawasumi,Itsuro TsushimaSaitama University(Saitama)Naoya Inoue Musashi Institute of Technology(Tokyo)Kenji KadotaTokyo Institute of Technology(Tokyo)Fumio KakimotoNishina Memorial Fundation(Tokyo)Koichi KamataHirosaki University (Hirosaki)Se

6、tsuo KawaguchiOsaka City University (Osaka)Saburo Kawakami RIKEN (Wako)Yoshiya Kawasaki,Naoto Sakaki,Hirohiko M.ShimizuEhime University (Matsuyama)Satoko Mizobuchi,Hisashi YoshiFukuki University of Technology (Fukui)Motohiko Nagano Communication Research Laboratory(Tokyo)Masahiko Sasano National Ins

7、titute of Radiological Sciences(Chiba)Yukio Uchihori Chiba University (Chiba)Nobuyuki Sakurai,Shigeru YoshidaMax-Planck-Institute for Physics(Munich)Kenji Shinozaki,Masahiro TeshimaUniversity of Chicago (Chicago)Tokonatsu YamamotoAGASA CollaboratorsWe are INTERCONTINETAL collaboration among 31(all J

8、apanese)scientists from 17 institutes in 3 nationsJapanFederal Republic of GermanyUnited States of AmericaAkeno ObservatoryInst.for Cosmic Ray Research,Univ.of TokyoAkeno,Yamanashi Japan(100km west of Tokyo)Lat.3547N,Long.13830E Altitude 900mAtom.depth 920 g/cm2 Ave.pressure 910hPaTemp.10+30Muon det

9、ectorstation Tokyo東京東京 Vladivostok Yakutsk Sea of Okhotsk海 Pacific Ocean太平洋TA Prototype TsukubaAkeno明野明野 M.Fuji富士山富士山LeadburgerMain BuildingCosmic Ray Imaging System AUGER Water TankAGASA(Akeno Giant Air Shower Array)8kmDetector station111 surface detectorsEffective area 100km2Optical fibre cable co

10、nnection to observatory27 muon detectorsSouthern region 30km2 coverage Operation Feb.1990Dec.19954 separate-array operationDec.1995Jan.2004 Unified operationSBNBABTBSurface detector5cm thick scintillatorHamamatsu 5”R1512 PMTMuon detectors(2.810m2;south region)1420 Proportional countersShielded by 30

11、cm Fe or 1m concreteThreshold energy:0.5GeVxsecTriggered by accompanying surface detectorShower front structure(empirical)Modified from Linsley formula Delay time behind shower planeTd(R)ns=2.6(1+R/30m)1.5(R)-0.5Shower front thicknessTs(R)ns=2.6(1+R/30m)1.5(R)-0.3Lateral distribution (empirical)Modi

12、fied Linsley formula(R)=C(R/RM)(1+R/RM)()1+(R/1000)2 C:Normalisation constant,=1.2,=0.6RM:Moliere unit Akeno(=91.6m)=(3.970.13)(1.790.62)(sec 1)Fluctuation of observed particle number 2=+0.25 2+(=scin2+rest2+stat2)sec1.1S(600)=10,30m2Energy estimating relationshipsEnergy vs.S(600)for vertical shower

13、sDai et al.s MC result by COSMOS+QCDJET(1988)E0 eV=2.031017 S0(600)S(600)Attenuation curveEmpirical relationship(equi-intensity cut method)S (600)=S0(600)expX0/1(sec1)X0/2(sec1)2X 0:Atmospheric depth AKeno(920 g/cm2)1=500 g/cm2 2 =594 g/cm221019eV11019eVEvent reconstruction1.Centre of gravity in ch

14、distribution a priori core location2.Arrival direction optimisation(fitting shower front structure)3.Core location estimation(fitting lateral distribution)4.Iterative recalculation of Steps 2&35.S(600)S0(600)translation6.Energy estimation by S0(600)vs.E0 relationEvent sampleEvent sampleEvent selecti

15、on criteria(standard)Dataset:February 1990 January 20041.Energy:1017eV (1018.5eV for spectrum)2.Zenith angle:45 3.Core location:inside AGASA boundary4.Number of hit detector 65.Good reconstruction 2 5for arrival direction fitting 2 1.5for core location fittingCore location distribution(1018.5eV)Befo

16、re&after unificationAperture:110km2sr extended to 160 km160 km2srsr95.1204.0190.295.12Exposure(up to May 2003)AGASA Exposure 5.4x1016 m2 sec sr above 1019eV within 45AGASA has higher exposure than HiRes below 3x1019eVAGASA detectorReconstruction accuracy(Energy resolution,Angular resolution)Energy r

17、esolutionE0/E0=30%1019.5eVE0/E0=25%1020eVAngular resolution=2.0 1019.5eV=1.3 1020eVLog(EnergyeV)1.0 0.0 1.0 0.0 1.020151050Counts%/bin8642 018 19 20 Log(EnergyeV)90%68%Open angle Energy spectrum (45)Super GZK-particles exist11events above 1020eVExpected 1.9 event on GZK assumption for uniform source

18、sDetector calibrationPWD monitored every RUN(10h)Information taken into account in analysisStability of detectorGain variation(peak of PWD):0.7%Linearity variation(slope of PWD):1.6%Linearity variation(11yr)Pulse width distri.(10hr)Gain variation(11yr)a:Slopet1:PeakCf./=a/Channel 0.5nsDetector simul

19、ation(GEANT)Detector container(0.4mm iron roof)Detector box(1.6mm iron)Scintillator(5cm thick)Earth(backscattering)Detector response understood at 5%accuracyEnergy conversionMuon/neutrinoEle.Mag90%90%primary energy carried by EM componentprimary particle&model a few%dependence S(600)depending less o

20、n primary particle/modelAIRES+QGSJET98/SIBYLL for p&FeEnergy dispersion in atmosphere Energy conversion factorRef.Model1ryabDai et al.88 COSMOS QCDJETp2.031.02Single=electron(900m)Nagano et al.99(CORSIKA5.621)QGSJET98p2.071.03Single=PH peak(900m)Fe2.341.00SIBYLL1.6p2.301.03Fe2.191.03Sakaki et al.01(

21、AIRES2.2.1)QGSJET98p2.171.01Single=PW peak(667m)Fe2.151.03SIBYLL1.6p2.341.04Fe2.241.02E0=a 1017eVx S(600)bPresently assigned primary energy:10%1 2%Most conservative(We need to push up current energy)S(600)attenuation curve4520.019.519.018.518.0AIRES code+QGSJET/SIBYLL model for p/Fe S(600)attenuatin

22、g rather slowlyCorrection factor less than 2 up to 45 zenith angleS(600)attenuation curve consistent between data&MCDepending less on 1ry particles or interaction modelsError on energy estimation:5%45Shower phenomenology effects(shower front thickness/delaying particles)Shower front thicknessParticl

23、e arrival time distri.2km(2x1020eV)Delaying particlesOverestimation effects Important far away from core Data between several 100m 1kmdominant in energy estimationEffect of shower front thickness+5%5%Effect of delaying particles+5%5%Major systematics in AGASA energy DetectorAbsolute gain0.7%Linearit

24、y7%Detector response(container,box backscattering)5%Energy estimator S(600)Interaction model,primary particles,altitude10%12%Shower PhenomenologyLateral distribution7%S(600)attenuation5%Shower front structure+5%5%Late arriving particles+5%5%Total18%Systematics is energy independent above 1019eVFeatu

25、re of spectrum can hardly change that extends beyond GZK cutoff.Consistency check in different apertureInside arrayWell inside array(2/3 AGASA)No systematic found in different aperturesEHECR spectrum extension beyond GZK cut-offRecent spectra(AGASA vs.HiResTsukuba ICRC)HiRes:Bergman et al.032.5 sigm

26、a discrepancy between AGASA&HiResEnergy scale difference by 25%vs.HiRes-stereovs.HiRes-Ivs.HiRes-IIComparison of Ne vs.S(600)in Akeno 1km2 arrayE0=8.51018 eV by Ne=5.13109E0=9.31018 eVby S(600)=45.7/m2 E0 eV=3.91015(Ne/106)0.9Derived from attenuation curve comparison with Chacalaya(5200m;540g/cm2)ex

27、perimentFairly good agreement between experiment&MCAGASA vs.A1 comparisonChemical composition studyUHECR composition is key discriminator of models Muons in giant air shower are key observable for AGASA Presence of Super-GZK particlesNo location identified as their sourcesPossibilities of Top-down m

28、odels(TDs,Z-burst,SHDM)Gamma-ray shower propertiesFewer muon content(photoproduced muon)Landau-Pomeranchuk-Migdal(LPM)effect(3x1019eV)Slowing down shower developmentInteraction in geomagnetic field(several x 1019eV)Accelerating shower developmentLPM effect extinctionIncident direction dependence2000

29、 g/cm20 g/cm2500 g/cm21020eV Gamma-ray(geomag.Interacted)1020eV Proton1020eV Gamma-ray(LPM effect)1000 g/cm2Simulated with MC by Stanev&VankovAverage S(600)vs.energy relationship for gamma-rays(Akeno)Gamma-rayenergy underestimation30%1019 eV50%1019.5 eV(Maximum LPM effct)30%1020 eV(Recovered by geom

30、ag.effect)rm(R)=C(R/R0)-1.2(1+R/R0)-2.52(1+(Rm/800)3)-0.6 ,E0=1017.51019eV R0:Characteristic distance(280m q=25o)Lateral distribution function obtained by A1 Experiment (Hayashida et al.1995)Lateral distribution of muonsNo significant change in shape of LDM up to 1020eVEmpirical formulaePrimary mass

31、 estimatorLateral distributionSAMPLECharged particle:Muon:Muon density at 1000mrm(1000)Fitting muon data in R=800-1600m to LDMError40%E0=1.8x1020eVrm(1000)=2.4/m2Muon density1000m r(1000)20%to total charged particlesFeasible mass estimator for UHECRsAnalysisDataset(13 December 1995 31 December 2002)

32、E01019eV Zenith angle:q36Normal event quality cuts 2 muon detectors in R=800m1600m rm(1000)Statistics129 events above 1019eV 19 events above 1019.5eVSimulationsProton/iron primaries(AIRES2.2.1+QGSJET98)Gamma-ray primaries(Geomag.+AIRES+LPM)Geomagnetic field effect Significant above 1019.5eVCode by S

33、tanev&VankovLPM effectSignificant above 1019.0eV Included in AIRESDetector configuration&analysis processr rm m(1000)distribution(E01019eV)Average relationship rm(1000)m2=(1.260.16)(E0eV/1019)0.930.13Consistent with proton dominant component 1919.52020.5Log(Energy eV)2101Log(Muon density1000mm2)Aken

34、o 1km2(A1):Hayashida et al.95 (Interpretation by AIRES+QGSJET)Haverah Park(HP):Ave et al.03Volcano Ranch(VR):Dova et al.(present conf.)HiRes(HiRes):Archbold et al.(present conf.)Present result (90%CL)Fe frac.:35%(1019 1019.5 eV)1019eV)(g/p1019.5eV)(g/p95%live-ratio Systematic errors in energy determ

35、ination 18%independent of energy(1019eV)Super-GZK particles do exist11 events observed 1020eV against 1.9 on GZK assumption Energy spectrum remains extending beyond GZK cut-offConventional GZK mechanism can hardly explain!Chemical compositionGradual lightening between 1017.5&1019eVLight component fa

36、voured 1019eV(AIRES+QGSJET)Gamma-ray dominance negative at highest energiesFraction of gamma-rays 1019.5eV)(AIRES+QGSJET)Another approach(Energy underestimation for gamma-rays)LPMGMFq=24.6Effects on UHE Gamma-rayLPM effect(3x1019eV)Geomagnetic effect (5x1019eV)Possible anisotropy in the sky expected for UHE gamma-raysNo indication found for UHE gamma-rays (present low statistics)Possible approach for future large-scale experimentsAkeno sky up to 45o This slide was shown for discussionRubtsovs talk

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服