ImageVerifierCode 换一换
格式:PPTX , 页数:30 ,大小:522.63KB ,
资源ID:4167027      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4167027.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(统计学计量经济学22一元线性回归模型参数估计.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

统计学计量经济学22一元线性回归模型参数估计.pptx

1、单方程计量经济学模型分为两大类:线性模型和非线性模型线性模型中,变量之间的关系呈线性关系非线性模型中,变量之间的关系呈非线性关系 一元线性回归模型一元线性回归模型:只有一个解释变量 i=1,2,nY为被解释变量,X为解释变量,0与1为待估待估参数参数,为随机干扰项随机干扰项18/9/2024 回归分析的主要目的回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归函数(模型)PRF。(参见图2.1.3)估计方法估计方法有多种,其种最广泛使用的是普通最普通最小二乘法小二乘法(ordinary least squares,OLS)。为保证参数估计量具有良好的性质,为保证参数估

2、计量具有良好的性质,通常对模型提出若干基本假设。通常对模型提出若干基本假设。注:实际这些假设与所采用的估计方法紧密相关。28/9/2024 回回归归分分析析的的主主要要目目的的:根据样本回归函数SRF,估计总体回归函数PRF。注意:注意:这里PRF可能永远无法知道。即,根据 估计38/9/2024最小二乘估计x xy y(x xn n,y yn n)(x x1 1,y y1 1)(x x2 2,y y2 2)(x xi i,y yi i)e ei i=y yi i-y yi i48/9/2024 一、线性回归模型的基本假设一、线性回归模型的基本假设假设1、解释变量X是确定性变量,不是随机变量;

3、假设2、随机误差项具有零均值、同方差和不序列相关性:E(i)=0 i=1,2,n Var(i)=2 i=1,2,n Cov(i,j)=0 ij i,j=1,2,n 假设3、随机误差项与解释变量X之间不相关:Cov(Xi,i)=0 i=1,2,n 假设4、服从零均值、同方差、零协方差的正态分布 iN(0,2)i=1,2,n58/9/2024 1、如果假设1、2满足,则假设3也满足;2、如果假设4满足,则假设2也满足。注意:注意:以上假设也称为线性回归模型的经典假设经典假设或高斯(高斯(Gauss)假设)假设,满足该假设的线性回归模型,也称为经典线性回归模型经典线性回归模型(Classical L

4、inear Regression Model,CLRM)。68/9/2024 另外另外,在进行模型回归时,还有两个暗含的假设:假设5:随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即 假设6:回归模型是正确设定的 假设5旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓的伪回归问题伪回归问题(spurious regression problem)。假设6也被称为模型没有设定偏误设定偏误(specification error)78/9/2024二、参数的普通最小二乘估计(二、参数的普通最小二乘估计(OLSOLS)

5、给定一组样本观测值(Xi,Yi)(i=1,2,n)要求样本回归函数尽可能好地拟合这组值.普通最小二乘法普通最小二乘法(Ordinary least squares,OLS)给出的判断标准是:二者之差的平方和最小。88/9/2024方程组(*)称为正规方程组正规方程组(normal equations)。98/9/2024记上述参数估计量可以写成:称为OLS估计量的离差形式离差形式(deviation form)。)。由于参数的估计结果是通过最小二乘法得到的,故称为普通普通最小二乘估计量最小二乘估计量(ordinary least squares estimators)。108/9/2024顺便

6、指出,记则有 可得(*)式也称为样本回归函数样本回归函数的离差形式离差形式。(*)注意:注意:在计量经济学中,往往以小写字母表示对均值的离差。118/9/2024 三、参数估计的最大或然法三、参数估计的最大或然法(ML)最大或然法最大或然法(Maximum Likelihood,简称ML),也称最大似然法最大似然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。基本原理基本原理:对于最大或然法最大或然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。128/9/2024在满足基本假设条件下,对

7、一元线性回归模型:随机抽取n组样本观测值(Xi,Yi)(i=1,2,n)。那么Yi服从如下的正态分布:于是,Y的概率函数为(i=1,2,n)假如模型的参数估计量已经求得,为138/9/2024因为Yi是相互独立的,所以的所有样本观测值的联合概率,也即或然函数或然函数(likelihood function)(likelihood function)为:将该或然函数极大化,即可求得到模型参数的极大或然估计量。148/9/2024 由于或然函数的极大化与或然函数的对数的极大化是等价的,所以,取对数或然函数如下:158/9/2024解得模型的参数估计量为:可见,在满足一系列基本假设的情况下,模型结构

8、参数的最最大大或或然然估估计计量量与普普通通最最小小二乘估计量二乘估计量是相同的。168/9/2024 例例2.2.1:在上述家庭可支配收入可支配收入-消费支出消费支出例中,对于所抽出的一组样本数,参数估计的计算可通过下面的表2.2.1进行。178/9/2024因此,由该样本估计的回归方程为:188/9/2024 四、最小二乘估计量的性质四、最小二乘估计量的性质 当模型参数估计出后,需考虑参数估计值的精度,即是否能代表总体参数的真值,或者说需考察参数估计量的统计性质。一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性)线性性,即它是否是另一随机变量的线性函数;(2)无偏性)无

9、偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性)有效性,即它是否在所有线性无偏估计量中具有最小方差。198/9/2024(4)渐渐近近无无偏偏性性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值;(5)一一致致性性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;(6)渐渐近近有有效效性性,即样本容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。这三个准则也称作估计量的小样本性质。小样本性质。拥有这类性质的估计量称为最佳线性无偏估计最佳线性无偏估计量量(best liner unbiased estimator,BLUE)。当不满足小样本性质时,需进一步考

10、察估计量的大大样本样本或或渐近性质渐近性质:208/9/2024高高 斯斯 马马 尔尔 可可 夫夫 定定 理理(Gauss-Markov theorem)在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。218/9/2024证:证:易知故同样地,容易得出 228/9/2024238/9/2024(2)证明最小方差性其中,ci=ki+di,di为不全为零的常数则容易证明 普通最小二乘估计量普通最小二乘估计量(ordinary least Squares Estimators)称为最佳线性无偏估计量最佳线性无偏估计量(best linear unbiased estimat

11、or,BLUE)248/9/2024 由于最小二乘估计量拥有一个由于最小二乘估计量拥有一个“好好”的估计量所的估计量所应具备的小样本特性,它自然也拥有大样本特性应具备的小样本特性,它自然也拥有大样本特性。258/9/2024 五、参数估计量的概率分布及随机干扰五、参数估计量的概率分布及随机干扰项方差的估计项方差的估计 268/9/2024278/9/20242、随机误差项、随机误差项 的方差的方差 2的估计的估计 由于随机项 i不可观测,只能从 i的估计残差ei i出发,对总体方差进行估计。2又称为总体方差总体方差。可以证明可以证明,2的最小二乘估计量最小二乘估计量为它是关于2的无偏估计量。288/9/2024 在最大或然估计法最大或然估计法中,因此,2 2的的最最大大或或然然估估计计量量不不具具无无偏偏性性,但却具有一致性但却具有一致性。298/9/2024308/9/2024

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服