1、运用机械能守恒解题的一般方法与步骤运用机械能守恒解题的一般方法与步骤:1、选取研究对象及运动过程。、选取研究对象及运动过程。2、进行受力分析,判断各力做功情况,判断机械能、进行受力分析,判断各力做功情况,判断机械能是否守恒。是否守恒。3、恰当选取零势面,确定初末状态的机械能、恰当选取零势面,确定初末状态的机械能4、根据机械能选取合适的表示式建立方程求解、根据机械能选取合适的表示式建立方程求解附:机械能的几种表示方式:附:机械能的几种表示方式:减少的势能等于增的动能;或减少的动能等减少的势能等于增的动能;或减少的动能等于增加的势能。即于增加的势能。即对系统:对系统:A物体减少的机械能等到于物体减
2、少的机械能等到于B物体增物体增加的机械能。即加的机械能。即分析解答分析解答取开始时两球所在的水平面为参考面取开始时两球所在的水平面为参考面由机械能守恒得:由机械能守恒得:在最低点时:在最低点时:因初状态因初状态A、B的机械能相等。的机械能相等。所以在最低点也相等所以在最低点也相等0=Ek-mgL Ek=mgLEkAEkBVAVB由向心力公式:由向心力公式:FA=FB例例1、两质量相同的小球、两质量相同的小球A、B,分别用轻杆悬挂在等,分别用轻杆悬挂在等高的高的O1、O2两点,两点,O1A比比 O2B长。如图所示把两球均长。如图所示把两球均拉到水平位置后由静止释放。试判断:拉到水平位置后由静止释
3、放。试判断:A、到最低点时、到最低点时A、B的速度大小相等的速度大小相等B、到最低点时、到最低点时A、B的机械能相等的机械能相等C、到最低点时、到最低点时A的动能大于的动能大于B的动能的动能D、到最低点时杆对、到最低点时杆对A的拉力大于杆对的拉力大于杆对B的拉力的拉力O1O2AB A、B机械能如何变化?机械能如何变化?2.如图所示,如图所示,A、B两球固定在同一根轻杆上,轻杆两球固定在同一根轻杆上,轻杆 可可绕绕O点自由转动。试分析由静止释放后点自由转动。试分析由静止释放后A A BO B由由V=R可知可知 VAVB 所以杆对所以杆对A做做负功负功,对对B做正功做正功.A机械能减少机械能减少,
4、B机机械能增加械能增加.A、B两球总机械能是否守恒?两球总机械能是否守恒?当把当把A、B看做一个系统时,整个过程只有动能和势能看做一个系统时,整个过程只有动能和势能参与转化。所以参与转化。所以A、B两球总机械能守恒。两球总机械能守恒。若若 OA=AB=L 试求杆转至竖直位置时,试求杆转至竖直位置时,A、B的速度。的速度。取开始时所在水平面为参考面取开始时所在水平面为参考面例例3 3 如图所示,在两个质量分别为如图所示,在两个质量分别为m m和和2m2m的小球的小球a a和和b b之间用一根长为之间用一根长为L L的轻杆连接,轻杆可绕中心的轻杆连接,轻杆可绕中心O O的水平的水平轴无摩擦转动,现
5、让杆处于水平位置无初速释放,在轴无摩擦转动,现让杆处于水平位置无初速释放,在杆转至竖直的过程中(轻杆质量不计)杆转至竖直的过程中(轻杆质量不计)A A、a a球机械能增大球机械能增大B B、b b球重力势能减少,动能增加,机球重力势能减少,动能增加,机械能守恒械能守恒C C、a a球和球和b b球总机械能守恒球总机械能守恒D D、a a球和球和b b球总机械能不守恒球总机械能不守恒a bab思考:思考:1.A1.A、B B两球的角速度有什么关系两球的角速度有什么关系?2.A2.A、B B两球的速度有什么关系?两球的速度有什么关系?3、若、若La=2Lb求小球的速度?求小球的速度?La=2Lb令
6、:令:Va=V Vb=2V例例4 4 如图所示,将如图所示,将A A、B B两个砝码用细线相连,挂在定滑轮两个砝码用细线相连,挂在定滑轮上,已知上,已知m mA A=200g=200g,m mB B=50g=50g,托起砝码,托起砝码A A使其比使其比B B的位置高的位置高0.2m0.2m,然后由静止释放,不计滑轮质量和摩擦,当两砝码,然后由静止释放,不计滑轮质量和摩擦,当两砝码运动到同一高度时,它们的速度大小为多少运动到同一高度时,它们的速度大小为多少(g=10m/s(g=10m/s2 2)?BAh解解:A A、B B组成的系统机械能守恒组成的系统机械能守恒。取开始时取开始时B B所在的水平
7、面为参考平面。所在的水平面为参考平面。系统初态的机械能为系统初态的机械能为当当A A、B B在同一高度时,它们的高度都为在同一高度时,它们的高度都为h/2h/2,此时系统的机械能为此时系统的机械能为由机械能守恒定律,得由机械能守恒定律,得例例5、如图,、如图,A、B两小球用细线相连,跨过固定的光滑两小球用细线相连,跨过固定的光滑圆柱体,开始时,两球与圆柱圆心等高。释放后,圆柱体,开始时,两球与圆柱圆心等高。释放后,A上上升,当升,当A升至最高点时对圆柱顶恰无压力。求升至最高点时对圆柱顶恰无压力。求A、B质量质量之比之比?AB解:设解:设A到最高点时,到最高点时,A、B的速率为的速率为V.在最高
8、点在最高点A对圆柱无压力对圆柱无压力取开始时取开始时,A、B所在水平面为参考平面。所在水平面为参考平面。由机械能守恒得:由机械能守恒得:mA:mB=(-1):):3思考:若已知思考:若已知A、B质量,质量,此时小球速度如何?此时小球速度如何?此过程绳对此过程绳对A做功多少?做功多少?练习、如图,半径为练习、如图,半径为R R的光滑半圆形的碗内,一根不可伸的光滑半圆形的碗内,一根不可伸长的较长细绳,两端各系一小球长的较长细绳,两端各系一小球A A和和B B,其质量分别为,其质量分别为m m1 1和和m m2 2(m(m1 1m m2 2)。现将。现将A A球置于碗的边缘,并由静止释放。球置于碗的
9、边缘,并由静止释放。求球求球A A运动到碗的最低点时,球运动到碗的最低点时,球B B的速度的速度V V2 2?BRRA解:设解:设A A球运动到最低点时的速度为球运动到最低点时的速度为V V1 1,B B的速度为的速度为V V2 2。由机械能守恒定。由机械能守恒定律得,律得,A A球减少的重力势能应等于球减少的重力势能应等于A A、B B增加的动能与增加的动能与B B球增加的重力势球增加的重力势能之和。能之和。BRRAV2V1例例3 3、如图,一根长为如图,一根长为L的细线,一端固定在天花板上的的细线,一端固定在天花板上的O点,点,另一端拴一个质量为另一端拴一个质量为m的小球,将小球拉起使细线
10、水平,然后的小球,将小球拉起使细线水平,然后无初速度地释放小球,则无初速度地释放小球,则(1)、小球摆到右方最高点的高度。、小球摆到右方最高点的高度。(2)、若在悬点、若在悬点O正下方正下方P处有一钉子,处有一钉子,OP=L/4,则小球碰到钉,则小球碰到钉子后能否通过最高点做圆周运动。子后能否通过最高点做圆周运动。(3)、要使小球碰到钉子后、要使小球碰到钉子后能够能过最高点做圆周运动,钉子应钉在什么地方。能够能过最高点做圆周运动,钉子应钉在什么地方。解:解:(1)(1)、小球在运动过程中机械能守恒,、小球在运动过程中机械能守恒,所以它能摆到右侧同一高度处。所以它能摆到右侧同一高度处。(2)(2
11、)、由于小球机械能守恒,所以它最多、由于小球机械能守恒,所以它最多 只能摆到右侧同一高度处,不能做只能摆到右侧同一高度处,不能做 圆周运动。圆周运动。OP解:解:(3)(3)、假设钉子钉在、假设钉子钉在O O点下方处点下方处要使小球能够通过最高点,至少需要使小球能够通过最高点,至少需OQAB小球在运动过程中只有重力做功,机械能守恒小球在运动过程中只有重力做功,机械能守恒初状态:初状态:以悬点以悬点O O所在平面为零势面所在平面为零势面末状态:末状态:由机械能守恒定律得由机械能守恒定律得解得解得解解:设抛出时的动能为设抛出时的动能为Ek,重重力势能为力势能为EP,抛出时速度为抛出时速度为V0 落
12、地时速度为落地时速度为:V0V落地时动能为落地时动能为:例例3、水平抛出一物体,物体落地时速度与水平方向的、水平抛出一物体,物体落地时速度与水平方向的夹角为夹角为.求刚抛出时的重力势能与动能之比是多少求刚抛出时的重力势能与动能之比是多少?由机械能守恒得由机械能守恒得:解:解:设小球自抛出到落到斜面上,在竖直方设小球自抛出到落到斜面上,在竖直方 向上下落的高度为向上下落的高度为h.水平方向的位移为水平方向的位移为S.由平抛运动规律可知:由平抛运动规律可知:竖直方向上:竖直方向上:水平方向上:水平方向上:S=Vt由图可知:由图可知:取取B点所在平面为参考面点所在平面为参考面.由机械能守恒得:由机械
13、能守恒得:例例3、如图示,在一个很长的斜面上某处、如图示,在一个很长的斜面上某处A,水平抛出,水平抛出一个物体,已知物体抛出时的动能为一个物体,已知物体抛出时的动能为1.5J,斜面倾角为,斜面倾角为=30=300 0,空气阻力不计,求它落到斜面上,空气阻力不计,求它落到斜面上B B点的动能。点的动能。AB1.1.如图所示,将如图所示,将A A、B B两个砝码用细线相连,挂在定滑轮两个砝码用细线相连,挂在定滑轮上,已知上,已知m mA A=200g=200g,m mB B=50g=50g,托起砝码,托起砝码A A使其比使其比B B的位置高的位置高0.2m0.2m,然后由静止释放,不计滑轮质量和摩
14、擦,当两砝码,然后由静止释放,不计滑轮质量和摩擦,当两砝码运动到同一高度时,它们的速度大小为多少运动到同一高度时,它们的速度大小为多少(g=10m/s(g=10m/s2 2)?2.2.如图,半径为如图,半径为R R的光滑半圆形的碗内,一根不可伸长的的光滑半圆形的碗内,一根不可伸长的较长细绳,两端各系一小球较长细绳,两端各系一小球A A和和B B,其质量分别为,其质量分别为m m1 1和和m m2 2(m(m1 1m m2 2)。现将。现将A A球置于碗的边缘,并由静止释放。求球置于碗的边缘,并由静止释放。求球球A A运动到碗的最低点时,球运动到碗的最低点时,球B B的速度的速度V V2 2?BRRABAh
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100