ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:13.77KB ,
资源ID:4162137      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4162137.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初三数学函数对称性的探究例题解析.docx)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初三数学函数对称性的探究例题解析.docx

1、 初三数学函数对称性的探究例题解析一、 函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,点P( x ,y)关于点A (a ,b)的对称点P(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) f (x) + f (2a-x

2、) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2.函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. 若函数y = f

3、(x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。 若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。 若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| a-b|是其一个周期。 的证明留给读者,以下给出的证明: 函数y = f (x)图像既关于点A (a ,c) 成中心对称, f (x) + f (2a-x) =2c,

4、用2b-x代x得: f (2b-x) + f 2a-(2b-x) =2c(*) 又函数y = f (x)图像直线x =b成轴对称, f (2b-x) = f (x)代入(*)得: f (x) = 2c-f 2(a-b) + x(*),用2(a-b)-x代x得 f 2 (a-b)+ x = 2c-f 4(a-b) + x代入(*)得: f (x) = f 4(a-b) + x,故y = f (x)是周期函数,且4| a-b|是其一个周期。 二、 不同函数对称性的探究 定理4.函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。 定理5.函数y = f (

5、x)与y = f (2a-x)的图像关于直线x = a成轴对称。 函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。 函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。 定理4与定理5中的证明留给读者,现证定理5中的 设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。记点P( x ,y)关于直线x-y = a的轴对称点为P(x1, y1),则x1 = a + y0 , y1 = x0-a ,x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a =

6、f (a + y1) 点P(x1, y1)在函数x-a = f ( (y + a)的图像上。 同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。故定理5中的成立。 推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。 三、 三角函数图像的对称性列表 函 数 对称中心坐标 对称轴方程 y = sin x ( k, 0 ) x = k+/2 y = cos x ( k+/2 ,0 ) x = k y = tan x (k/2 ,0 ) 无 注:上表中kZ y = tan x的全部对称中

7、心坐标应当是(k/2 ,0 ),而在岑申、王而冶主编的浙江训练出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y = tan x的全部对称中心坐标是( k, 0 ),这明显是错的。 四、 函数对称性应用举例 例1:定义在R上的特别数函数满意:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)肯定是( )(第十二届盼望杯高二其次试题) (A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数 解:f (10+x)为偶函数,f (10+x) =

8、f (10-x). f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数,x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。 应选(A) 例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=( )。 (A) 1999; (B)2022; (C)2022;(D)2022。 解:y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称, y = g-1(x-2) 反函数是y = f(x-1)

9、,而y = g-1(x-2)的反函数是:y = 2 + g(x), f(x-1) = 2 + g(x), 有f(5-1) = 2 + g(5)=2022 故f(4) = 2022,应选(C) 例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1x0时, f (x) = - x,则f (8.6 ) = _ (第八届盼望杯高二第一试题) 解:f(x)是定义在R上的偶函数x = 0是y = f(x)对称轴; 又f(1+x)= f(1-x) x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,f (8.6 ) = f (8+0.6 ) = f (

10、0.6 ) = f (-0.6 ) = 0.3 例4.函数 y = sin (2x + )的图像的一条对称轴的方程是( )(92全国高考理) (A) x = - (B) x = - (C) x = (D) x = 解:函数 y = sin (2x + )的图像的全部对称轴的方程是2x + = k+ x = - ,明显取k = 1时的对称轴方程是x = - 应选(A) 例5. 设f(x)是定义在R上的奇函数,且f(x+2)= -f(x),当0x1时, f (x) = x,则f (7.5 ) = ( ) (A) 0.5 (B) -0.5 (C) 1.5 (D) -1.5 解:y = f (x)是定义在R上的奇函数,点(0,0)是其对称中心; 又f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x),直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。 f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 应选(B)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服